interactive.py 5.89 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Louis Martin's avatar
Louis Martin committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8
9
10
"""
Translate raw text with a trained model. Batches data on-the-fly.
"""
Myle Ott's avatar
Myle Ott committed
11

Myle Ott's avatar
Myle Ott committed
12
from collections import namedtuple
13
import fileinput
Louis Martin's avatar
Louis Martin committed
14
import sys
Myle Ott's avatar
Myle Ott committed
15

Louis Martin's avatar
Louis Martin committed
16
17
import torch

Myle Ott's avatar
Myle Ott committed
18
from fairseq import options, tasks, utils
Louis Martin's avatar
Louis Martin committed
19
from fairseq.sequence_generator import SequenceGenerator
20
from fairseq.utils import import_user_module
Myle Ott's avatar
Myle Ott committed
21

Myle Ott's avatar
Myle Ott committed
22
Batch = namedtuple('Batch', 'ids src_tokens src_lengths')
23
Translation = namedtuple('Translation', 'src_str hypos pos_scores alignments')
24
25


26
def buffered_read(input, buffer_size):
27
    buffer = []
Myle Ott's avatar
Myle Ott committed
28
29
30
31
32
33
    with fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")) as h:
        for src_str in h:
            buffer.append(src_str.strip())
            if len(buffer) >= buffer_size:
                yield buffer
                buffer = []
34
35
36
37
38

    if len(buffer) > 0:
        yield buffer


39
def make_batches(lines, args, task, max_positions):
Myle Ott's avatar
Myle Ott committed
40
    tokens = [
41
        task.source_dictionary.encode_line(src_str, add_if_not_exist=False).long()
Myle Ott's avatar
Myle Ott committed
42
43
        for src_str in lines
    ]
Myle Ott's avatar
Myle Ott committed
44
    lengths = torch.LongTensor([t.numel() for t in tokens])
45
    itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
46
        dataset=task.build_dataset_for_inference(tokens, lengths),
Myle Ott's avatar
Myle Ott committed
47
48
49
50
51
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
    ).next_epoch_itr(shuffle=False)
    for batch in itr:
52
        yield Batch(
Myle Ott's avatar
Myle Ott committed
53
54
55
            ids=batch['id'],
            src_tokens=batch['net_input']['src_tokens'], src_lengths=batch['net_input']['src_lengths'],
        )
56

Louis Martin's avatar
Louis Martin committed
57

Myle Ott's avatar
Myle Ott committed
58
def main(args):
59
60
    import_user_module(args)

Myle Ott's avatar
Myle Ott committed
61
62
63
64
65
    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

Myle Ott's avatar
Myle Ott committed
66
67
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
68
69
70
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

Myle Ott's avatar
Myle Ott committed
71
    print(args)
Louis Martin's avatar
Louis Martin committed
72
73
74

    use_cuda = torch.cuda.is_available() and not args.cpu

Myle Ott's avatar
Myle Ott committed
75
76
77
    # Setup task, e.g., translation
    task = tasks.setup_task(args)

Louis Martin's avatar
Louis Martin committed
78
    # Load ensemble
79
    print('| loading model(s) from {}'.format(args.path))
Myle Ott's avatar
Myle Ott committed
80
81
82
    models, _model_args = utils.load_ensemble_for_inference(
        args.path.split(':'), task, model_arg_overrides=eval(args.model_overrides),
    )
Louis Martin's avatar
Louis Martin committed
83

Myle Ott's avatar
Myle Ott committed
84
    # Set dictionaries
Myle Ott's avatar
Myle Ott committed
85
    src_dict = task.source_dictionary
Myle Ott's avatar
Myle Ott committed
86
    tgt_dict = task.target_dictionary
Louis Martin's avatar
Louis Martin committed
87
88
89

    # Optimize ensemble for generation
    for model in models:
Myle Ott's avatar
Myle Ott committed
90
91
92
93
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
Myle Ott's avatar
Myle Ott committed
94
95
        if args.fp16:
            model.half()
Myle Ott's avatar
Myle Ott committed
96
97
        if use_cuda:
            model.cuda()
Louis Martin's avatar
Louis Martin committed
98
99

    # Initialize generator
Myle Ott's avatar
Myle Ott committed
100
    generator = task.build_generator(args)
Louis Martin's avatar
Louis Martin committed
101
102
103
104
105

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

106
107
108
109
110
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

111
112
113
    if args.buffer_size > 1:
        print('| Sentence buffer size:', args.buffer_size)
    print('| Type the input sentence and press return:')
Myle Ott's avatar
Myle Ott committed
114
    start_id = 0
115
    for inputs in buffered_read(args.input, args.buffer_size):
116
        results = []
Myle Ott's avatar
Myle Ott committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        for batch in make_batches(inputs, args, task, max_positions):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translations = task.inference_step(generator, models, sample)
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                results.append((start_id + id, src_tokens_i, hypos))

        # sort output to match input order
        for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
137
138
139
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id, src_str))
Myle Ott's avatar
Myle Ott committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )
                print('H-{}\t{}\t{}'.format(id, hypo['score'], hypo_str))
                print('P-{}\t{}'.format(
                    id,
                    ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist()))
                ))
                if args.print_alignment:
                    print('A-{}\t{}'.format(
                        id,
                        ' '.join(map(lambda x: str(utils.item(x)), alignment))
                    ))

        # update running id counter
163
        start_id += len(inputs)
Louis Martin's avatar
Louis Martin committed
164

Myle Ott's avatar
Myle Ott committed
165

Myle Ott's avatar
Myle Ott committed
166
def cli_main():
167
    parser = options.get_generation_parser(interactive=True)
168
    args = options.parse_args_and_arch(parser)
Myle Ott's avatar
Myle Ott committed
169
    main(args)
Myle Ott's avatar
Myle Ott committed
170
171
172
173


if __name__ == '__main__':
    cli_main()