test_oss.py 35.3 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

10

11
12
import copy
from math import inf
13
import tempfile
14
from typing import Any, Dict, Type, cast
15
import unittest
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
16

17
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
18
19
20
21
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
22
from torch.nn.parallel import DistributedDataParallel as DDP
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
23
24

import fairscale.optim as optim
25
from fairscale.utils import torch_version
26
27
from fairscale.utils.testing import (
    check_same_model_params,
28
    check_same_models_across_ranks,
29
30
31
32
    skip_if_no_cuda,
    skip_if_py39_no_cuda,
    skip_if_single_gpu,
)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
33

34
35
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")
36
RECIPIENT_RANK = 1
37

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
38

39
40
41
def dist_init(rank, world_size, tempfile_name, backend=BACKEND):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
42
43


44
def sync_object_ranks(something_to_sync: Any, reference_rank: int, device: torch.device) -> Any:
45
46
47
    package = [something_to_sync]
    dist.broadcast_object_list(package, src=reference_rank, group=dist.group.WORLD)
    package_sync = package[0]
48
49
50
    return package_sync


51
52
53
54
class TestSingleRank(unittest.TestCase):
    """
    All the following tests do not check for inter-process communication
    """
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
55

56
57
    def setUp(self):
        dist_init(0, 1, tempfile.mkstemp()[1])
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
58

59
60
    def tearDown(self):
        torch.distributed.destroy_process_group()
61

62
63
64
    def test_create(self):
        params = [torch.rand(1)]
        o = optim.OSS(params, lr=0.01)
65

66
67
68
    def test_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1, momentum=0.9)
69
        x.backward()
70
71
72
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
73
        o.zero_grad()
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
        state_dict = o.state_dict()

        # Check that the state dict is pytorch-compliant key wise
        assert "param_groups" in state_dict.keys()
        assert "state" in state_dict.keys()

        # Check that the pulled state is what we expect, and that we have all the expected keys
        assert state_dict["param_groups"][0]["lr"] == 0.1
        assert state_dict["param_groups"][0]["momentum"] == 0.9
        assert not state_dict["param_groups"][0]["nesterov"]
        assert state_dict["param_groups"][0]["weight_decay"] == 0.0
        assert state_dict["param_groups"][0]["dampening"] == 0.0

        # Check that the pulled state and the .param_groups attribute are in sync
        for k in state_dict["param_groups"][0].keys():
            if k != "params":
                assert state_dict["param_groups"][0][k] == o.param_groups[0][k]

        # Check that it's correctly loaded
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(state_dict)
        # Check that state is correct and on proper device
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)

        # We should now be using a lr of 0.1, both within the optimizer
        # and as exposed by the .param_groups attribute
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
103
        o.step()
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        assert x == torch.tensor([0.71], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)

        # Check that the exposed param_groups are on the proper device
        assert o.param_groups[0]["params"][0].device == x.device

    def test_lr_scheduler(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.01)
        o2 = torch.optim.SGD([x2], lr=0.01)
        s = torch.optim.lr_scheduler.StepLR(o, 1)
        s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
        for _ in range(5):
            x.backward()
            o.zero_grad()
            o.step()
            s.step()
            x2.backward()
            o2.zero_grad()
            o2.step()
            s2.step()
            assert x == x2

    def test_step_with_kwargs(self):
        class SGDWithStepKWArg(torch.optim.SGD):
            def step(self, closure=None, kwarg=[]):
                super().step()
                kwarg.append(5)

        kwarg = []
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
        x.backward()
        o.step(0, kwarg=kwarg)
        assert kwarg == [5]
        assert x == torch.tensor([0.9], device=DEVICE)

142
143
144
145
146
147
148
149
150
151
152
153
    @skip_if_no_cuda
    def test_device_change(self):
        x = torch.nn.Linear(1, 1).to("cpu")
        o = optim.OSS(x.parameters(), torch.optim.SGD, lr=0.1)

        # Move the model to device after OSS was constructed
        x.to(DEVICE)
        x(torch.zeros((1), device=DEVICE)).backward()

        # Check that OSS detects that the device changed
        o.step()

154
155
156
        # Check that the default device has been updated
        assert o._default_device.type == DEVICE

157
158
159
160
161
162
163
164
165
166
167
168
169
    def test_step_with_extra_inner_key(self):
        class SGDWithNewKey(torch.optim.SGD):
            # Dummy optimizer which adds a new key to the param groups
            def step(self, closure=None):
                super().step()
                self.param_groups[0]["new_key"] = 0.1

        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithNewKey, lr=0.1)
        x.backward()
        o.step()
        assert o.param_groups[0]["new_key"] == 0.1
        assert x == torch.tensor([0.9], device=DEVICE)
170

171
172
173
174
    def test_step_without_closure(self):
        class SGDWithoutClosure(torch.optim.SGD):
            def step(self):
                return super().step()
175

176
177
178
179
180
181
182
183
184
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_implicit_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
185
186
        with pytest.raises(RuntimeError):
            _ = o.state_dict()
187
188


189
190
def run_test_add_param_group(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
191
192
193
194

    # Test with all parameters trainable to begin with
    def all_trainable():
        params = []
195
196
197
        sizes = [9, 7, 5, 3]
        sizes_world = sizes * world_size
        for size in sizes_world[:-1]:
198
199
200
201
202
203
204
205
206
207
208
209
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
210
211
212

        # Verify that added group is added to the correct partition making all have the same number of elements
        assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        assert len(o.optim.param_groups) == 2

    # Test a pathological config with a first big non-trainable param
    def some_trainable():
        params = []
        for size in [100, 3, 5, 2, 6, 4]:
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params[1:]:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
        assert len(o.optim.param_groups) == 2

    all_trainable()
    some_trainable()
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
235

236
237
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
238
239

def test_add_param_group():
240
    world_size = 4
241
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
242
243
        world_size = min(world_size, torch.cuda.device_count())

244
    mp.spawn(run_test_add_param_group, args=(world_size, tempfile.mkstemp()[1]), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
245
246


247
248
def run_test_zero_grad(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
249
250
251
252
253
254
255
256
257
258
259
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad

260
261
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
262
263
264

def test_zero_grad():
    world_size = 2
265
266
267
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        world_size = min(world_size, torch.cuda.device_count())

268
269
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_zero_grad, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
270
271


272
273
def run_test_empty_shard(rank, world_size, tempfile_name, backend):
    dist_init(rank, world_size, tempfile_name, backend=backend)
274
    m = torch.nn.Linear(1, 1)
275
276
277
278
279
280
281
282
283
284
    x = torch.rand(20, 1)

    if torch.cuda.is_available():
        m = m.to(rank)
        x = x.to(rank)

    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x).sum()
    y.backward()
    o.step()
285
286
287
288

    dist.destroy_process_group()


289
290
@pytest.mark.parametrize("backend", ["gloo", "nccl"])
def test_empty_shard(backend):
291
    world_size = 4
292
293
294
295
296
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        world_size = min(world_size, torch.cuda.device_count())
    if world_size == 1 or (backend == "nccl" and not torch.cuda.is_available()):
        pytest.skip("Not enough GPUs to test with NCCL, or CUDA not present")
    mp.spawn(run_test_empty_shard, args=(world_size, tempfile.mkstemp()[1], backend), nprocs=world_size, join=True)
297
298


299
300
def run_test_step(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
301
302
303
304
305
306
307
308
309
310
311
312
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
313
314
    assert m.weight == torch.tensor([[0.75]], device=rank), f"{rank}: {m.weight.item()}, 0.75 expected"
    assert m.bias == torch.tensor([1.85], device=rank), f"{rank}: {m.bias.item()}, 1.85 expected"
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
315

316
317
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
318

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
319
@skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
320
def test_step():
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
321
    world_size = 2
322
323
324
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
325
326


327
328
def run_test_step_with_closure(rank, world_size, tempfile_name, optimizer=None):
    dist_init(rank, world_size, tempfile_name)
329

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
330
331
332
333
334
335
336
337
338
339
340
341
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
342

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
343
    o = optim.OSS(m.parameters(), lr=0.1)
344

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)

364
365
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
366
367
368

@skip_if_no_cuda
def test_step_with_closure():
369
    world_size = min(2, torch.cuda.device_count())
370
371
372
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step_with_closure, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
373
374


375
376
def run_test_sharding(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
377
    params = []
378
379
380
381
    sizes = [9, 7, 5, 3]
    sizes_world = sizes * world_size

    for size in sizes_world:
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
382
        params.append(torch.rand(size, 1))
383
384
385
386
387

    # Make sure that the params are trainable, enforces size-based partitioning
    for p in params:
        p.requires_grad = True

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
388
    o = optim.OSS(params, lr=0.1)
389
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == sum(sizes)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
390

391
392
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
393
394

def test_sharding():
395
396
397
    world_size = 4
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
398

399
    _, temp_file_name = tempfile.mkstemp()
400
    mp.spawn(run_test_sharding, args=(world_size, temp_file_name), nprocs=world_size, join=True)
401
402


403
404
def run_test_collect_shards(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
405
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE
406
    torch.cuda.set_device(rank)
407
408

    # Run a dummy step so that the optimizer state dict exists
409
    batch, input_width, hidden, target_width = 3, 3, 3, 5
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
439
        assert len(optimizer_state_dict["state"]) == len(list(model.parameters()))
440
441
442
    else:
        optimizer_state_dict = {}

443
444
    # distribute to the other ranks
    optimizer_state_dict = sync_object_ranks(optimizer_state_dict, reference_rank, device)
445
446

    # Load the optimizer state dict
447
    optimizer.load_state_dict(optimizer_state_dict)
448
449
450
451
452

    # Check that the states are not None, but {}
    for state in optimizer.state.values():
        for _, _ in state.items():
            pass
453
454
455
456
457
458
459
460

    # Test the state dict materialization on all ranks
    _ = optimizer.step(closure=closure)
    optimizer_state_dict = optimizer.state_dict(all_ranks=True)  # one per rank
    optimizer.load_state_dict(optimizer_state_dict)
    _ = optimizer.step(closure=closure)
    check_same_models_across_ranks(model, dist.group.WORLD, params_should_be_equal=True, check_broadcast_buffers=False)

461
462
463
464
465
    # Check that if the model is moved to cpu, the optimizer consolidation still works
    model.cpu()
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

466
    dist.destroy_process_group()
467
468


469
@skip_if_single_gpu
470
def test_collect_shards():
471
    world_size = 2
472
    temp_file_name = tempfile.mkstemp()[1]
473
474
475
    reference_rank = 0

    mp.spawn(
476
477
478
479
        run_test_collect_shards,
        args=(world_size, reference_rank, temp_file_name),
        nprocs=world_size,
        join=True,
480
    )
481
482


483
def run_test_reproducibility(rank, world_size, tempfile_name, broadcast_fp16):
484
485
    dist_init(rank, world_size, tempfile_name)
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE
486
    torch.cuda.set_device(rank)
487
488
489
490
491
492
493
494

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 3, 3, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)
495
    model = DDP(model, device_ids=[device])
496
497
498
499

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

500
    optimizer = optim.OSS(model.parameters(), optim=torch.optim.RMSprop, lr=0.1, broadcast_fp16=broadcast_fp16)
501
502
503
504
505
506
507
508
509
510

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

511
512
513
    # Get a snapshot of the state at this point
    optimizer_state_dict = copy.deepcopy(optimizer.state_dict(all_ranks=True))
    model_state_dict = copy.deepcopy(model.state_dict())
514
515
516
517
518
519
520

    # Run two steps, log the loss
    _ = optimizer.step(closure=closure)
    reference_loss = optimizer.step(closure=closure)

    # Load the optimizer state dict, rewind the state two steps back
    optimizer.load_state_dict(optimizer_state_dict)
521
    model.load_state_dict(model_state_dict)
522
523
524
525
526

    # Run two new steps, log the loss again and check that we get the same
    _ = optimizer.step(closure=closure)
    test_loss = optimizer.step(closure=closure)

527
    assert torch.allclose(reference_loss, test_loss), f"{reference_loss} vs {test_loss}. Reproducibility is broken"
528

529
530
531
532
    # Check that no matter what the buffer is back to fp32
    for device in optimizer.buckets.keys():
        for bucket in optimizer.buckets[device].values():
            assert bucket.buffer.dtype == torch.float32
533
534
535
    dist.destroy_process_group()


536
@skip_if_single_gpu
537
538
@pytest.mark.parametrize("broadcast_fp16", [False, True])
def test_reproducibility(broadcast_fp16: bool):
539
540
541
542
    world_size = 2
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(
543
544
545
546
        run_test_reproducibility,
        args=(world_size, temp_file_name, broadcast_fp16),
        nprocs=world_size,
        join=True,
547
548
549
    )


550
def run_test_multiple_groups(rank, world_size, tempfile_name):
551
    # Only work with the even ranks, to check that the global_rank indexing is properly used
552
    dist_init(rank=rank, world_size=world_size, tempfile_name=tempfile_name, backend="gloo")
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
591
592
593
594
595
                            assert torch.all(
                                torch.eq(receptacle[0], sync_p)
                            ), "Models differ in between ranks {} - {}".format(
                                torch.norm(receptacle[0]), torch.norm(sync_p)
                            )
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)

618
619
    dist.destroy_process_group(process_group)

620

621
@skip_if_py39_no_cuda
622
623
def test_multiple_groups():
    world_size = 6
624
    temp_file_name = tempfile.mkstemp()[1]
625
626

    mp.spawn(
627
628
629
630
        run_test_multiple_groups,
        args=(world_size, temp_file_name),
        nprocs=world_size,
        join=True,
631
    )
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657


def run_gradient_clipping(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)
    NORMS = [1.0, 2.0, 1, 2, inf]
    CLIP_NORM = 0.3

    def check(norm):
        model_oss = torch.nn.Sequential(
            torch.nn.Linear(input_width, hidden),
            torch.nn.Linear(hidden, hidden),
            torch.nn.Linear(hidden, target_width),
        ).to(device)
        model = copy.deepcopy(model_oss)

        # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
        # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
        # gradient norm computation from OSS and adds a dependency.
        # to keep the comparison apples-to-apples DDP is used in both cases
658
659
660
661
        model_oss = DDP(
            module=model_oss,
            device_ids=[rank],
        )
662
663
        sharded_optimizer = optim.OSS(model_oss.parameters(), lr=0.1, momentum=0.99)

664
665
666
667
        model = DDP(
            model,
            device_ids=[rank],
        )
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()
        model_oss.zero_grad()

        outputs = model(inputs)
        outputs_oss = model_oss(inputs)

        loss = loss_fn(outputs, target)
        loss.backward()

        loss_oss = loss_fn(outputs_oss, target)
        loss_oss.backward()
683
        torch.testing.assert_allclose(loss_oss, loss)
684
685
686
687
688
689
690

        # Check the equivalence with the non-sharded optim
        oss_total_norm = sharded_optimizer.clip_grad_norm(CLIP_NORM, norm_type=norm)
        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM, norm_type=norm)
        assert torch.allclose(oss_total_norm, total_norm), "torch and fairscale should return the same grad norm"

        # Check that the params have indeed been clipped
691
        for params in sharded_optimizer._per_device_params.values():
692
693
694
695
696
697
698
            for param in filter(lambda x: x.grad is not None, params[rank]):
                assert torch.norm(param.grad, p=norm) < CLIP_NORM, f"param grad norm above clip : {param.grad}"

    for norm in NORMS:
        print(f"Checking norm {norm}")
        check(norm)

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
699
700
701
        # Check twice, catch an hypothetic iterator dumb mistake
        check(norm)

702
703
704
705
706
707
708
709
710
711
712
713
714
    dist.destroy_process_group()


@skip_if_no_cuda
def test_gradient_clipping():
    world_size = 3
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
    reference_rank = 0

    mp.spawn(
715
716
717
718
        run_gradient_clipping,
        args=(world_size, temp_file_name),
        nprocs=world_size,
        join=True,
719
    )
720
721
722
723


def run_state_dict_distributed(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
724

725
726
727
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

728
729
    # Setup two problems in parallel, we'll make sure that the second track (with save/load) follows the first one(untouched)
    # We split the model in two to test the multiple param groups support
730
731
732
733
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

734
    model_oss1 = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, hidden)).to(device)
735
736
    head_oss1 = torch.nn.Linear(hidden, target_width).to(device)

737
    model_oss2 = copy.deepcopy(model_oss1)
738
    head_oss2 = copy.deepcopy(head_oss1)
739
740
741
742
743

    # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
    # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
    # gradient norm computation from OSS and adds a dependency.
    # to keep the comparison apples-to-apples DDP is used in both cases
744
745
746
747
    model_oss1 = DDP(
        module=model_oss1,
        device_ids=[rank],
    )
748
    sharded_optimizer1 = optim.OSS(model_oss1.parameters(), lr=0.1, momentum=0.99)
749
750
    sharded_optimizer1.add_param_group({"params": head_oss1.parameters()})

751
752
753
754
    model_oss2 = DDP(
        module=model_oss2,
        device_ids=[rank],
    )
755
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
756
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
757

758
    loss_fn = torch.nn.L1Loss().to(device)
759

760
    def run_grad_step(model, head, optimizer):
761
        model.zero_grad()
762
        outputs = head(model(inputs))
763

764
765
766
767
    # pull the current state, broadcast it to all ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
768

769
770
    # re-create a new optimizer from scratch with absurd values, load the previous state
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=1e6, momentum=0.0001)
771
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
772
    sharded_optimizer2.load_state_dict(state_dict2)
773
774
775
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (before any steps)"
    )
776
777

    # now take a step and check that parameters are equal
778
779
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
780
781
782
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after stepping)"
    )
783

784
785
786
787
    # save the state dict for one model only, then distribute to the other ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
788
789
790
791
792
793
794
795

    # Check that the pulled state and the .param_groups attribute are in sync
    for replica in range(len(state_dict2["param_groups"])):
        for k in state_dict2["param_groups"][replica].keys():
            if k != "params":
                assert state_dict2["param_groups"][replica][k] == sharded_optimizer2.param_groups[0][k]

    # take a step
796
797
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
798
799
800
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after consolidating)"
    )
801

802
803
804
805
    # save again for one rank, then distribute to the others
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
806
807
808

    # reload the state_dict
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
809
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
810
811
812
    sharded_optimizer2.load_state_dict(state_dict2)

    # take a step
813
814
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
815
816
817
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after reloading)"
    )
818
819
820
821

    dist.destroy_process_group()


822
@skip_if_single_gpu
823
def test_state_dict_distributed():
824
    world_size = 2
825
826
827
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
828
        world_size = max(world_size, torch.cuda.device_count())
829
830

    mp.spawn(
831
832
833
834
        run_state_dict_distributed,
        args=(world_size, temp_file_name),
        nprocs=world_size,
        join=True,
835
    )
836
837


838
def run_ddp_parity(rank, world_size, backend, temp_file_name, change_train_graph, broadcast_fp16):
839
840
841
842
843
844
845
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)

    device = torch.device("cuda")
    torch.cuda.set_device(rank)
    torch.manual_seed(rank)
    np.random.seed(rank)
846
847
848
849
    hidden = 5
    in_channels = 3
    out_channels = 3
    batch = 64
850

851
    def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer], change_train_graph: bool = False):
852
        # Any model works. Add one different buffer per rank
853
854
855
        trunk = torch.nn.Sequential(
            torch.nn.Linear(in_channels, hidden), torch.nn.Linear(hidden, hidden), torch.nn.Linear(hidden, hidden)
        )
856
857
858
859
860
861
        trunk.register_buffer("test_buffer", torch.ones((1)) * rank)
        trunk.to(device)

        head = torch.nn.Linear(hidden, out_channels).to(device)

        # Define a model to be trained by OSS
862
        oss_module = torch.nn.Sequential(trunk, head)
863
864

        # Make sure that the param groups are interleaved, to catch an ordering bug in the state dict
865
        oss_trainable_params = [
866
867
            {"params": list(trunk.parameters())[:-1] + list(head.parameters()), "lr": 1e-5},
            {"params": list(trunk.parameters())[-1], "lr": 1e-4},
868
869
        ]

870
871
        optimizer_settings: Dict[Any, Any] = {}
        if isinstance(optimizer, torch.optim.SGD):
872
873
874
875
876
877
878
879
880
881
            optimizer_settings["momentum"] = 0.9

        sharded_optimizer = optim.OSS(
            params=oss_trainable_params,
            optim=optimizer,
            group=None,
            broadcast_buffer_size=2 ** 10,
            **optimizer_settings,
        )

882
        oss_ddp_model = DDP(module=oss_module, device_ids=[rank], broadcast_buffers=True, find_unused_parameters=True)
883

884
885
886
887
        # Define a model to be trained by normal pytorch + DDP
        ddp_trunk = copy.deepcopy(trunk)
        ddp_head = copy.deepcopy(head)
        ddp_module = torch.nn.Sequential(ddp_trunk, ddp_head)
888

889
        ddp_trainable_params = [
890
891
            {"params": list(ddp_trunk.parameters())[:-1] + list(ddp_head.parameters()), "lr": 1e-5},
            {"params": list(ddp_trunk.parameters())[-1], "lr": 1e-4},
892
893
        ]
        ddp_optimizer = optimizer(ddp_trainable_params, **optimizer_settings)  # type: ignore
894
        ddp_model = DDP(module=ddp_module, device_ids=[rank], broadcast_buffers=True, find_unused_parameters=True)
895

896
897
        def check_step():
            input_tensor = torch.rand((batch, in_channels)).to(device)
898
899
900
901
902
903
904
905
906

            def closure_ddp(input_tensor=input_tensor):
                ddp_optimizer.zero_grad()
                ddp_loss = ddp_model(input_tensor).abs().sum()
                ddp_loss.backward()
                return ddp_loss

            def closure_sharded(input_tensor=input_tensor):
                sharded_optimizer.zero_grad()
907
                sharded_loss = oss_ddp_model(input_tensor).abs().sum()
908
909
910
911
912
913
914
                sharded_loss.backward()
                return sharded_loss

            loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
            loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))

            assert torch.allclose(
915
916
                loss_ddp, loss_sharded_optim, rtol=1e-3
            ), f"Losses differ in between Pytorch optim and OSS\n {loss_ddp.item()} - {loss_sharded_optim.item()} - world size {world_size}"
917

918
919
            check_same_model_params(oss_ddp_model, ddp_model)

920
        # The model should be synchronized in between the ranks at construction time, check that
921
        check_same_model_params(oss_ddp_model, ddp_model)
922
923
924
925

        # The models should stay the same in between ddp and sharded optimizer
        for i in range(5):
            check_step()
926
927
928
929
930
931
932

            # Check that altering the trainable parameters does not cause DDP and OSS to diverge
            if change_train_graph:
                # Flip the first parameter from trainable to non-trainable and vice-versa
                next(ddp_module.parameters()).requires_grad = not next(ddp_module.parameters()).requires_grad
                next(oss_module.parameters()).requires_grad = not next(oss_module.parameters()).requires_grad
                # sharded_optimizer.refresh_trainable()
933

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
        # Check that the checkpoints are compatible (post pytorch 1.5)
        if torch_version()[1] > 5:
            # - get states
            ddp_state_dict = ddp_optimizer.state_dict()
            sharded_optimizer.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)
            sharded_optim_state_dict = sharded_optimizer.state_dict() if rank == RECIPIENT_RANK else {}
            sharded_optim_state_dict = sync_object_ranks(sharded_optim_state_dict, RECIPIENT_RANK, device)

            # - cross load the states
            # run one step and check that the models are still the same
            ddp_state_dict_ref = copy.deepcopy(ddp_state_dict)  # OSS will remove some states
            ddp_optimizer.load_state_dict(sharded_optim_state_dict)  # mixup on purpose !
            sharded_optimizer.load_state_dict(ddp_state_dict)
            check_step()

            #  - self load, rewind, check no problem
            # run one step and check that the models are still the same
            ddp_optimizer.load_state_dict(ddp_state_dict_ref)
            sharded_optimizer.load_state_dict(sharded_optim_state_dict)
            check_step()
954

955
    for opt in [torch.optim.Adam, torch.optim.SGD]:
956
        check_optimizer_equivalence(opt, change_train_graph=change_train_graph)
957
958
959
960
961
962

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
963
964
@pytest.mark.parametrize("change_train_graph", [True, False])
@pytest.mark.parametrize("backend", [dist.Backend.NCCL, dist.Backend.GLOO])
965
966
@pytest.mark.parametrize("broadcast_fp16", [False, True])
def test_ddp_parity(change_train_graph: bool, backend: dist.Backend, broadcast_fp16: bool):
967
968
    temp_file_name = tempfile.mkstemp()[1]
    world_size = torch.cuda.device_count()
969
    mp.spawn(
970
971
972
973
        run_ddp_parity,
        args=(world_size, backend, temp_file_name, change_train_graph, broadcast_fp16),
        nprocs=world_size,
        join=True,
974
    )