"src/turbomind/vscode:/vscode.git/clone" did not exist on "d26f4c7385d64a89f42cb11e69a16a2e97c42397"
test_oss.py 27.7 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

10

11
12
import copy
from math import inf
13
import tempfile
14
from typing import Type, cast
15
import unittest
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
16

17
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
18
19
20
21
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
22
from torch.nn.parallel import DistributedDataParallel as DDP
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
23
24

import fairscale.optim as optim
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
25
from fairscale.utils.testing import skip_if_no_cuda, skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
26

27
28
29
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")

30
31
32
33
34
35
36
37
38
try:
    from torch.distributed import broadcast_object_list  # noqa

    _torch_broadcast_object = True
except ImportError:
    from fairscale.optim.utils import broadcast_object  # noqa

    _torch_broadcast_object = False

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
39

40
41
42
def dist_init(rank, world_size, tempfile_name, backend=BACKEND):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
43
44


45
46
47
48
class TestSingleRank(unittest.TestCase):
    """
    All the following tests do not check for inter-process communication
    """
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
49

50
51
    def setUp(self):
        dist_init(0, 1, tempfile.mkstemp()[1])
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
52

53
54
    def tearDown(self):
        torch.distributed.destroy_process_group()
55

56
57
58
    def test_create(self):
        params = [torch.rand(1)]
        o = optim.OSS(params, lr=0.01)
59

60
61
62
    def test_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1, momentum=0.9)
63
        x.backward()
64
65
66
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
67
        o.zero_grad()
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
        state_dict = o.state_dict()

        # Check that the state dict is pytorch-compliant key wise
        assert "param_groups" in state_dict.keys()
        assert "state" in state_dict.keys()

        # Check that the pulled state is what we expect, and that we have all the expected keys
        assert state_dict["param_groups"][0]["lr"] == 0.1
        assert state_dict["param_groups"][0]["momentum"] == 0.9
        assert not state_dict["param_groups"][0]["nesterov"]
        assert state_dict["param_groups"][0]["weight_decay"] == 0.0
        assert state_dict["param_groups"][0]["dampening"] == 0.0

        # Check that the pulled state and the .param_groups attribute are in sync
        for k in state_dict["param_groups"][0].keys():
            if k != "params":
                assert state_dict["param_groups"][0][k] == o.param_groups[0][k]

        # Check that it's correctly loaded
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(state_dict)
        # Check that state is correct and on proper device
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)

        # We should now be using a lr of 0.1, both within the optimizer
        # and as exposed by the .param_groups attribute
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
97
        o.step()
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        assert x == torch.tensor([0.71], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)

        # Check that the exposed param_groups are on the proper device
        assert o.param_groups[0]["params"][0].device == x.device

    def test_lr_scheduler(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.01)
        o2 = torch.optim.SGD([x2], lr=0.01)
        s = torch.optim.lr_scheduler.StepLR(o, 1)
        s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
        for _ in range(5):
            x.backward()
            o.zero_grad()
            o.step()
            s.step()
            x2.backward()
            o2.zero_grad()
            o2.step()
            s2.step()
            assert x == x2

    def test_step_with_kwargs(self):
        class SGDWithStepKWArg(torch.optim.SGD):
            def step(self, closure=None, kwarg=[]):
                super().step()
                kwarg.append(5)

        kwarg = []
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
        x.backward()
        o.step(0, kwarg=kwarg)
        assert kwarg == [5]
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_step_with_extra_inner_key(self):
        class SGDWithNewKey(torch.optim.SGD):
            # Dummy optimizer which adds a new key to the param groups
            def step(self, closure=None):
                super().step()
                self.param_groups[0]["new_key"] = 0.1

        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithNewKey, lr=0.1)
        x.backward()
        o.step()
        assert o.param_groups[0]["new_key"] == 0.1
        assert x == torch.tensor([0.9], device=DEVICE)
149

150
151
152
153
    def test_step_without_closure(self):
        class SGDWithoutClosure(torch.optim.SGD):
            def step(self):
                return super().step()
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
        local_state_dict = o.local_state_dict()
        o = optim.OSS([x], lr=0.01)
        o.load_local_state_dict(local_state_dict)
        # We should now be using a lr of 0.1.
        assert o.optim.param_groups[0]["lr"] == 0.1
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_implicit_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
        local_state_dict = o.state_dict()
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(local_state_dict)
        # We should now be using a lr of 0.1.
        assert o.optim.param_groups[0]["lr"] == 0.1
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
186
187


188
189
def run_test_add_param_group(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    # Test with all parameters trainable to begin with
    def all_trainable():
        params = []
        for size in [4, 5, 2, 6, 4]:
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
        # Verify that added group is added to the correct partition making all have 8 elements.
        assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == 8
        assert len(o.optim.param_groups) == 2

    # Test a pathological config with a first big non-trainable param
    def some_trainable():
        params = []
        for size in [100, 3, 5, 2, 6, 4]:
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params[1:]:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
        assert len(o.optim.param_groups) == 2

    all_trainable()
    some_trainable()
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
231

232
233
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
234
235
236

def test_add_param_group():
    world_size = 3
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
237
    if not torch.cuda.is_available() or torch.cuda.device_count() < world_size:
238
        pytest.skip("Not enough GPUs for NCCL-based test")
239
240
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_add_param_group, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
241
242


243
244
def run_test_zero_grad(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
245
246
247
248
249
250
251
252
253
254
255
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad

256
257
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
258
259
260

def test_zero_grad():
    world_size = 2
261
262
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_zero_grad, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
263
264


265
266
def run_test_step(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)

282
283
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
284

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
285
@skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
286
def test_step():
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
287
    world_size = 2
288
289
290
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
291
292


293
294
def run_test_step_with_closure(rank, world_size, tempfile_name, optimizer=None):
    dist_init(rank, world_size, tempfile_name)
295

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
296
297
298
299
300
301
302
303
304
305
306
307
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
308

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
309
    o = optim.OSS(m.parameters(), lr=0.1)
310

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)

330
331
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
332
333
334

@skip_if_no_cuda
def test_step_with_closure():
335
    world_size = min(2, torch.cuda.device_count())
336
337
338
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step_with_closure, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
339
340


341
342
def run_test_sharding(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
343
344
345
    params = []
    for size in [5, 4, 2, 6, 4, 3]:
        params.append(torch.rand(size, 1))
346
347
348
349
350

    # Make sure that the params are trainable, enforces size-based partitioning
    for p in params:
        p.requires_grad = True

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
351
352
353
    o = optim.OSS(params, lr=0.1)
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == 8

354
355
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
356
357
358

def test_sharding():
    world_size = 3
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
359
    if not torch.cuda.is_available() or torch.cuda.device_count() < world_size:
360
        pytest.skip("Not enough GPUs for NCCL-based test")
361
362
363
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_sharding, args=(world_size, temp_file_name), nprocs=world_size, join=True)
364
365


366
367
def run_test_collect_shards(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
368
369
370
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
371
    batch, input_width, hidden, target_width = 3, 3, 3, 5
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
401
        assert len(optimizer_state_dict["state"]) == world_size
402
403
404
    else:
        optimizer_state_dict = {}

405
    optim_state = [optimizer_state_dict]
406
407
408
409
410
411
412
    if _torch_broadcast_object:
        dist.broadcast_object_list(optim_state, src=reference_rank, group=dist.group.WORLD)
        optimizer_state_dict = optim_state[0]
    else:
        optimizer_state_dict = optim.utils.broadcast_object(
            optimizer_state_dict, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
        )
413
414

    # Load the optimizer state dict
415
    optimizer.load_state_dict(optimizer_state_dict)
416
    dist.destroy_process_group()
417
418
419
420


def test_collect_shards():
    world_size = 3
421
422
    temp_file_name = tempfile.mkstemp()[1]

423
424
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
425
426
427
    reference_rank = 0

    mp.spawn(
428
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
429
    )
430
431


432
def run_test_multiple_groups(rank, world_size, tempfile_name):
433
    # Only work with the even ranks, to check that the global_rank indexing is properly used
434
    dist_init(rank=rank, world_size=world_size, tempfile_name=tempfile_name, backend="gloo")
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
                            assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks"

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)

496
497
498
    dist.destroy_process_group(process_group)
    dist.destroy_process_group()

499
500
501

def test_multiple_groups():
    world_size = 6
502
    temp_file_name = tempfile.mkstemp()[1]
503
504

    mp.spawn(
505
        run_test_multiple_groups, args=(world_size, temp_file_name), nprocs=world_size, join=True,
506
    )
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581


def run_gradient_clipping(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)
    NORMS = [1.0, 2.0, 1, 2, inf]
    CLIP_NORM = 0.3

    def check(norm):
        model_oss = torch.nn.Sequential(
            torch.nn.Linear(input_width, hidden),
            torch.nn.Linear(hidden, hidden),
            torch.nn.Linear(hidden, target_width),
        ).to(device)
        model = copy.deepcopy(model_oss)

        # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
        # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
        # gradient norm computation from OSS and adds a dependency.
        # to keep the comparison apples-to-apples DDP is used in both cases
        model_oss = DDP(module=model_oss, device_ids=[rank],)
        sharded_optimizer = optim.OSS(model_oss.parameters(), lr=0.1, momentum=0.99)

        model = DDP(model, device_ids=[rank],)

        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()
        model_oss.zero_grad()

        outputs = model(inputs)
        outputs_oss = model_oss(inputs)

        loss = loss_fn(outputs, target)
        loss.backward()

        loss_oss = loss_fn(outputs_oss, target)
        loss_oss.backward()

        # Check the equivalence with the non-sharded optim
        oss_total_norm = sharded_optimizer.clip_grad_norm(CLIP_NORM, norm_type=norm)
        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM, norm_type=norm)
        assert torch.allclose(oss_total_norm, total_norm), "torch and fairscale should return the same grad norm"

        # Check that the params have indeed been clipped
        for params in sharded_optimizer.per_device_params.values():
            for param in filter(lambda x: x.grad is not None, params[rank]):
                assert torch.norm(param.grad, p=norm) < CLIP_NORM, f"param grad norm above clip : {param.grad}"

    for norm in NORMS:
        print(f"Checking norm {norm}")
        check(norm)

    dist.destroy_process_group()


@skip_if_no_cuda
def test_gradient_clipping():
    world_size = 3
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
    reference_rank = 0

    mp.spawn(
        run_gradient_clipping, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621


def run_state_dict_distributed(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model_oss1 = torch.nn.Sequential(
        torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, hidden), torch.nn.Linear(hidden, target_width),
    ).to(device)
    model_oss2 = copy.deepcopy(model_oss1)

    # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
    # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
    # gradient norm computation from OSS and adds a dependency.
    # to keep the comparison apples-to-apples DDP is used in both cases
    model_oss1 = DDP(module=model_oss1, device_ids=[rank],)
    sharded_optimizer1 = optim.OSS(model_oss1.parameters(), lr=0.1, momentum=0.99)
    model_oss2 = DDP(module=model_oss2, device_ids=[rank],)
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)

    def run_grad_step(device, model, optimizer):
        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()

        outputs = model(inputs)

        loss = loss_fn(outputs, target)
        loss.backward()

        optimizer.step()
        optimizer.zero_grad()

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    # save and reload without taking any steps
    sharded_optimizer2.consolidate_state_dict()
    state_dict2 = sharded_optimizer2.state_dict()
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
    sharded_optimizer2.load_state_dict(state_dict2)

    # now take a step and check that parameters are equal
    # take a step
    run_grad_step(device, model_oss1, sharded_optimizer1)
    run_grad_step(device, model_oss2, sharded_optimizer2)

    # check that model parameters are equal
    for param1, param2 in zip(model_oss1.parameters(), model_oss2.parameters()):
        assert torch.allclose(param1, param2), "parameters of the two identical models have diverged (before any steps)"

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    # take a step
    run_grad_step(device, model_oss1, sharded_optimizer1)
    run_grad_step(device, model_oss2, sharded_optimizer2)

    # check that model parameters are equal
    for param1, param2 in zip(model_oss1.parameters(), model_oss2.parameters()):
        assert torch.allclose(param1, param2), "parameters of the two identical models have diverged (before saving)"

    # save the state dict for one model only
    sharded_optimizer2.consolidate_state_dict()
    state_dict2 = sharded_optimizer2.state_dict()

    # Check that the pulled state and the .param_groups attribute are in sync
    for replica in range(len(state_dict2["param_groups"])):
        for k in state_dict2["param_groups"][replica].keys():
            if k != "params":
                assert state_dict2["param_groups"][replica][k] == sharded_optimizer2.param_groups[0][k]

    # take a step
    run_grad_step(device, model_oss1, sharded_optimizer1)
    run_grad_step(device, model_oss2, sharded_optimizer2)

    # check that saving did not cause a change in the parameters
    for param1, param2 in zip(model_oss1.parameters(), model_oss2.parameters()):
        assert torch.allclose(
            param1, param2
        ), "parameters of the two identical models have diverged (after consolidating)"

    # save again
    sharded_optimizer2.consolidate_state_dict()
    state_dict2 = sharded_optimizer2.state_dict()

    # reload the state_dict
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
    sharded_optimizer2.load_state_dict(state_dict2)

    # take a step
    run_grad_step(device, model_oss1, sharded_optimizer1)
    run_grad_step(device, model_oss2, sharded_optimizer2)

    # check that reloading a saved state dict does not change the parameters
    for param1, param2 in zip(model_oss1.parameters(), model_oss2.parameters()):
        assert torch.allclose(param1, param2), "parameters of the two identical models have diverged (after reloading)"

    dist.destroy_process_group()


@skip_if_no_cuda
def test_state_dict_distributed():
    world_size = 8
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())

    mp.spawn(
        run_state_dict_distributed, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771


def run_ddp_parity(rank, world_size, backend, temp_file_name):
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)

    device = torch.device("cuda")
    torch.cuda.set_device(rank)
    torch.manual_seed(rank)
    np.random.seed(rank)

    def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer]):
        # Any model works. Add one different buffer per rank
        model = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Linear(3, 3), torch.nn.Linear(3, 3),)
        model.register_buffer("test_buffer", torch.ones((1)) * rank)
        model.to(device)

        sharded_optimizer = optim.OSS(params=model.parameters(), optim=optimizer, lr=1e-3)
        sharded_ddp_model = DDP(module=model, device_ids=[rank], broadcast_buffers=True)

        ddp_model_single = copy.deepcopy(model)
        ddp_optimizer = optimizer(ddp_model_single.parameters(), lr=1e-3)
        ddp_model = DDP(ddp_model_single, device_ids=[rank], broadcast_buffers=True)

        def check_same_model_params():
            for pg, ddp_pg in zip(sharded_optimizer.param_groups, ddp_optimizer.param_groups):
                for p, ddp_p in zip(pg["params"], ddp_pg["params"]):
                    assert torch.allclose(
                        p, ddp_p, atol=1e-3
                    ), f"Model parameters differ in between Pytorch optim and OSS \n{p} {ddp_p}\nworld size {world_size}"

            for b, ddp_b in zip(sharded_ddp_model.buffers(), ddp_model.buffers()):
                assert torch.allclose(
                    b, ddp_b
                ), f"Model buffers differ in between Pytorch optim and OSS\nworld size {world_size}"

        # The model should be synchronized in between the ranks at construction time, check that
        check_same_model_params()

        # The models should stay the same in between the ranks
        for i in range(20):
            input_tensor = torch.rand((64, 2)).to(device)

            def closure_ddp(input_tensor=input_tensor):
                ddp_optimizer.zero_grad()
                ddp_loss = ddp_model(input_tensor).abs().sum()
                ddp_loss.backward()
                return ddp_loss

            def closure_sharded(input_tensor=input_tensor):
                sharded_optimizer.zero_grad()
                sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
                sharded_loss.backward()
                return sharded_loss

            loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
            loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))

            assert torch.allclose(
                loss_ddp, loss_sharded_optim
            ), f"Losses differ in between Pytorch optim and OSS\nworld size {world_size}"

            check_same_model_params()

    for opt in [torch.optim.SGD, torch.optim.Adam]:
        check_optimizer_equivalence(opt)

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_ddp_parity():
    temp_file_name = tempfile.mkstemp()[1]
    world_size = torch.cuda.device_count()
    backend = dist.Backend.NCCL
    mp.spawn(run_ddp_parity, args=(world_size, backend, temp_file_name), nprocs=world_size, join=True)