test_oss.py 31.8 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

10

11
12
import copy
from math import inf
13
import tempfile
14
from typing import Any, Type, cast
15
import unittest
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
16

17
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
18
19
20
21
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
22
from torch.nn.parallel import DistributedDataParallel as DDP
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
23
24

import fairscale.optim as optim
25
from fairscale.utils.testing import skip_if_no_cuda, skip_if_py39_no_cuda, skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
26

27
28
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")
29
RECIPIENT_RANK = 1
30

31
32
33
34
35
36
37
38
39
try:
    from torch.distributed import broadcast_object_list  # noqa

    _torch_broadcast_object = True
except ImportError:
    from fairscale.optim.utils import broadcast_object  # noqa

    _torch_broadcast_object = False

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
40

41
42
43
def dist_init(rank, world_size, tempfile_name, backend=BACKEND):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
44
45


46
47
48
49
50
51
52
53
54
55
56
57
58
def sync_object_ranks(something_to_sync: Any, reference_rank: int, device: torch.device) -> Any:
    if _torch_broadcast_object:
        package = [something_to_sync]
        dist.broadcast_object_list(package, src=reference_rank, group=dist.group.WORLD)
        package_sync = package[0]
    else:
        package_sync = optim.utils.broadcast_object(
            something_to_sync, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
        )

    return package_sync


59
60
61
62
class TestSingleRank(unittest.TestCase):
    """
    All the following tests do not check for inter-process communication
    """
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
63

64
65
    def setUp(self):
        dist_init(0, 1, tempfile.mkstemp()[1])
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
66

67
68
    def tearDown(self):
        torch.distributed.destroy_process_group()
69

70
71
72
    def test_create(self):
        params = [torch.rand(1)]
        o = optim.OSS(params, lr=0.01)
73

74
75
76
    def test_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1, momentum=0.9)
77
        x.backward()
78
79
80
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
81
        o.zero_grad()
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
        state_dict = o.state_dict()

        # Check that the state dict is pytorch-compliant key wise
        assert "param_groups" in state_dict.keys()
        assert "state" in state_dict.keys()

        # Check that the pulled state is what we expect, and that we have all the expected keys
        assert state_dict["param_groups"][0]["lr"] == 0.1
        assert state_dict["param_groups"][0]["momentum"] == 0.9
        assert not state_dict["param_groups"][0]["nesterov"]
        assert state_dict["param_groups"][0]["weight_decay"] == 0.0
        assert state_dict["param_groups"][0]["dampening"] == 0.0

        # Check that the pulled state and the .param_groups attribute are in sync
        for k in state_dict["param_groups"][0].keys():
            if k != "params":
                assert state_dict["param_groups"][0][k] == o.param_groups[0][k]

        # Check that it's correctly loaded
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(state_dict)
        # Check that state is correct and on proper device
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)

        # We should now be using a lr of 0.1, both within the optimizer
        # and as exposed by the .param_groups attribute
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
111
        o.step()
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        assert x == torch.tensor([0.71], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)

        # Check that the exposed param_groups are on the proper device
        assert o.param_groups[0]["params"][0].device == x.device

    def test_lr_scheduler(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.01)
        o2 = torch.optim.SGD([x2], lr=0.01)
        s = torch.optim.lr_scheduler.StepLR(o, 1)
        s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
        for _ in range(5):
            x.backward()
            o.zero_grad()
            o.step()
            s.step()
            x2.backward()
            o2.zero_grad()
            o2.step()
            s2.step()
            assert x == x2

    def test_step_with_kwargs(self):
        class SGDWithStepKWArg(torch.optim.SGD):
            def step(self, closure=None, kwarg=[]):
                super().step()
                kwarg.append(5)

        kwarg = []
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
        x.backward()
        o.step(0, kwarg=kwarg)
        assert kwarg == [5]
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_step_with_extra_inner_key(self):
        class SGDWithNewKey(torch.optim.SGD):
            # Dummy optimizer which adds a new key to the param groups
            def step(self, closure=None):
                super().step()
                self.param_groups[0]["new_key"] = 0.1

        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithNewKey, lr=0.1)
        x.backward()
        o.step()
        assert o.param_groups[0]["new_key"] == 0.1
        assert x == torch.tensor([0.9], device=DEVICE)
163

164
165
166
167
    def test_step_without_closure(self):
        class SGDWithoutClosure(torch.optim.SGD):
            def step(self):
                return super().step()
168

169
170
171
172
173
174
175
176
177
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_implicit_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
178
179
        with pytest.raises(RuntimeError):
            _ = o.state_dict()
180
181


182
183
def run_test_add_param_group(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
184
185
186
187

    # Test with all parameters trainable to begin with
    def all_trainable():
        params = []
188
189
190
        sizes = [9, 7, 5, 3]
        sizes_world = sizes * world_size
        for size in sizes_world[:-1]:
191
192
193
194
195
196
197
198
199
200
201
202
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
203
204
205

        # Verify that added group is added to the correct partition making all have the same number of elements
        assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        assert len(o.optim.param_groups) == 2

    # Test a pathological config with a first big non-trainable param
    def some_trainable():
        params = []
        for size in [100, 3, 5, 2, 6, 4]:
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params[1:]:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
        assert len(o.optim.param_groups) == 2

    all_trainable()
    some_trainable()
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
228

229
230
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
231
232

def test_add_param_group():
233
    world_size = 4
234
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
235
236
        world_size = min(world_size, torch.cuda.device_count())

237
238
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_add_param_group, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
239
240


241
242
def run_test_zero_grad(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
243
244
245
246
247
248
249
250
251
252
253
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad

254
255
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
256
257
258

def test_zero_grad():
    world_size = 2
259
260
261
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        world_size = min(world_size, torch.cuda.device_count())

262
263
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_zero_grad, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
264
265


266
267
def run_test_step(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)

283
284
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
285

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
286
@skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
287
def test_step():
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
288
    world_size = 2
289
290
291
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
292
293


294
295
def run_test_step_with_closure(rank, world_size, tempfile_name, optimizer=None):
    dist_init(rank, world_size, tempfile_name)
296

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
297
298
299
300
301
302
303
304
305
306
307
308
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
309

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
310
    o = optim.OSS(m.parameters(), lr=0.1)
311

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)

331
332
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
333
334
335

@skip_if_no_cuda
def test_step_with_closure():
336
    world_size = min(2, torch.cuda.device_count())
337
338
339
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step_with_closure, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
340
341


342
343
def run_test_sharding(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
344
    params = []
345
346
347
348
    sizes = [9, 7, 5, 3]
    sizes_world = sizes * world_size

    for size in sizes_world:
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
349
        params.append(torch.rand(size, 1))
350
351
352
353
354

    # Make sure that the params are trainable, enforces size-based partitioning
    for p in params:
        p.requires_grad = True

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
355
    o = optim.OSS(params, lr=0.1)
356
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == sum(sizes)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
357

358
359
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
360
361

def test_sharding():
362
363
364
    world_size = 4
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
365

366
    _, temp_file_name = tempfile.mkstemp()
367
    mp.spawn(run_test_sharding, args=(world_size, temp_file_name), nprocs=world_size, join=True)
368
369


370
371
def run_test_collect_shards(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
372
373
374
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
375
    batch, input_width, hidden, target_width = 3, 3, 3, 5
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
405
        assert len(optimizer_state_dict["state"]) == len(list(model.parameters()))
406
407
408
    else:
        optimizer_state_dict = {}

409
410
    # distribute to the other ranks
    optimizer_state_dict = sync_object_ranks(optimizer_state_dict, reference_rank, device)
411
412

    # Load the optimizer state dict
413
    optimizer.load_state_dict(optimizer_state_dict)
414
    dist.destroy_process_group()
415
416
417
418


def test_collect_shards():
    world_size = 3
419
420
    temp_file_name = tempfile.mkstemp()[1]

421
422
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
423
424
425
    reference_rank = 0

    mp.spawn(
426
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
427
    )
428
429


430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
def run_test_reproducibility(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 3, 3, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    optimizer = optim.OSS(model.parameters(), optim=torch.optim.RMSprop, lr=0.1)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank, broadcast to the other ones
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
    else:
        optimizer_state_dict = {}

    # Run two steps, log the loss
    _ = optimizer.step(closure=closure)
    reference_loss = optimizer.step(closure=closure)

    # Load the optimizer state dict, rewind the state two steps back
    optimizer.load_state_dict(optimizer_state_dict)

    # Run two new steps, log the loss again and check that we get the same
    _ = optimizer.step(closure=closure)
    test_loss = optimizer.step(closure=closure)

    assert torch.allclose(reference_loss, test_loss)

    dist.destroy_process_group()


def test_reproducibility():
    world_size = 2
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        # Bail out if not enough devices
        return

    reference_rank = 0

    mp.spawn(
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
    )


496
def run_test_multiple_groups(rank, world_size, tempfile_name):
497
    # Only work with the even ranks, to check that the global_rank indexing is properly used
498
    dist_init(rank=rank, world_size=world_size, tempfile_name=tempfile_name, backend="gloo")
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
537
538
539
540
541
                            assert torch.all(
                                torch.eq(receptacle[0], sync_p)
                            ), "Models differ in between ranks {} - {}".format(
                                torch.norm(receptacle[0]), torch.norm(sync_p)
                            )
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)

564
565
    dist.destroy_process_group(process_group)

566

567
@skip_if_py39_no_cuda
568
569
def test_multiple_groups():
    world_size = 6
570
    temp_file_name = tempfile.mkstemp()[1]
571
572

    mp.spawn(
573
        run_test_multiple_groups, args=(world_size, temp_file_name), nprocs=world_size, join=True,
574
    )
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649


def run_gradient_clipping(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)
    NORMS = [1.0, 2.0, 1, 2, inf]
    CLIP_NORM = 0.3

    def check(norm):
        model_oss = torch.nn.Sequential(
            torch.nn.Linear(input_width, hidden),
            torch.nn.Linear(hidden, hidden),
            torch.nn.Linear(hidden, target_width),
        ).to(device)
        model = copy.deepcopy(model_oss)

        # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
        # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
        # gradient norm computation from OSS and adds a dependency.
        # to keep the comparison apples-to-apples DDP is used in both cases
        model_oss = DDP(module=model_oss, device_ids=[rank],)
        sharded_optimizer = optim.OSS(model_oss.parameters(), lr=0.1, momentum=0.99)

        model = DDP(model, device_ids=[rank],)

        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()
        model_oss.zero_grad()

        outputs = model(inputs)
        outputs_oss = model_oss(inputs)

        loss = loss_fn(outputs, target)
        loss.backward()

        loss_oss = loss_fn(outputs_oss, target)
        loss_oss.backward()

        # Check the equivalence with the non-sharded optim
        oss_total_norm = sharded_optimizer.clip_grad_norm(CLIP_NORM, norm_type=norm)
        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM, norm_type=norm)
        assert torch.allclose(oss_total_norm, total_norm), "torch and fairscale should return the same grad norm"

        # Check that the params have indeed been clipped
        for params in sharded_optimizer.per_device_params.values():
            for param in filter(lambda x: x.grad is not None, params[rank]):
                assert torch.norm(param.grad, p=norm) < CLIP_NORM, f"param grad norm above clip : {param.grad}"

    for norm in NORMS:
        print(f"Checking norm {norm}")
        check(norm)

    dist.destroy_process_group()


@skip_if_no_cuda
def test_gradient_clipping():
    world_size = 3
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
    reference_rank = 0

    mp.spawn(
        run_gradient_clipping, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
650
651
652
653


def run_state_dict_distributed(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
654

655
656
657
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

658
659
    # Setup two problems in parallel, we'll make sure that the second track (with save/load) follows the first one(untouched)
    # We split the model in two to test the multiple param groups support
660
661
662
663
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

664
    model_oss1 = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, hidden)).to(device)
665
666
    head_oss1 = torch.nn.Linear(hidden, target_width).to(device)

667
    model_oss2 = copy.deepcopy(model_oss1)
668
    head_oss2 = copy.deepcopy(head_oss1)
669
670
671
672
673
674
675

    # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
    # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
    # gradient norm computation from OSS and adds a dependency.
    # to keep the comparison apples-to-apples DDP is used in both cases
    model_oss1 = DDP(module=model_oss1, device_ids=[rank],)
    sharded_optimizer1 = optim.OSS(model_oss1.parameters(), lr=0.1, momentum=0.99)
676
677
    sharded_optimizer1.add_param_group({"params": head_oss1.parameters()})

678
679
    model_oss2 = DDP(module=model_oss2, device_ids=[rank],)
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
680
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
681

682
    loss_fn = torch.nn.L1Loss().to(device)
683

684
    def run_grad_step(model, head, optimizer):
685
        model.zero_grad()
686
        outputs = head(model(inputs))
687

688
689
690
    def check_equal_models(message: str):
        for param1, param2 in zip(model_oss1.parameters(), model_oss2.parameters()):
            assert torch.allclose(param1, param2), message
691

692
693
694
695
    # pull the current state, broadcast it to all ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
696

697
698
    # re-create a new optimizer from scratch with absurd values, load the previous state
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=1e6, momentum=0.0001)
699
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
700
    sharded_optimizer2.load_state_dict(state_dict2)
701
    check_equal_models("parameters of the two identical models have diverged (before any steps)")
702
703

    # now take a step and check that parameters are equal
704
705
706
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
    check_equal_models("parameters of the two identical models have diverged (after stepping)")
707

708
709
710
711
    # save the state dict for one model only, then distribute to the other ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
712
713
714
715
716
717
718
719

    # Check that the pulled state and the .param_groups attribute are in sync
    for replica in range(len(state_dict2["param_groups"])):
        for k in state_dict2["param_groups"][replica].keys():
            if k != "params":
                assert state_dict2["param_groups"][replica][k] == sharded_optimizer2.param_groups[0][k]

    # take a step
720
721
722
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
    check_equal_models("parameters of the two identical models have diverged (after consolidating)")
723

724
725
726
727
    # save again for one rank, then distribute to the others
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
728
729
730

    # reload the state_dict
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
731
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
732
733
734
    sharded_optimizer2.load_state_dict(state_dict2)

    # take a step
735
736
737
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
    check_equal_models("parameters of the two identical models have diverged (after reloading)")
738
739
740
741
742
743

    dist.destroy_process_group()


@skip_if_no_cuda
def test_state_dict_distributed():
744
    world_size = 2
745
746
747
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
748
        world_size = max(world_size, torch.cuda.device_count())
749
750
751
752

    mp.spawn(
        run_state_dict_distributed, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
753
754
755
756
757
758
759
760
761
762


def run_ddp_parity(rank, world_size, backend, temp_file_name):
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)

    device = torch.device("cuda")
    torch.cuda.set_device(rank)
    torch.manual_seed(rank)
    np.random.seed(rank)
763
764
765
766
    hidden = 5
    in_channels = 3
    out_channels = 3
    batch = 64
767
768
769

    def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer]):
        # Any model works. Add one different buffer per rank
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
        trunk = torch.nn.Sequential(torch.nn.Linear(in_channels, hidden), torch.nn.Linear(hidden, hidden))
        trunk.register_buffer("test_buffer", torch.ones((1)) * rank)
        trunk.to(device)

        head = torch.nn.Linear(hidden, out_channels).to(device)

        # Define a model to be trained by OSS
        oss_model = torch.nn.Sequential(trunk, head)
        oss_trainable_params = [
            {"params": trunk.parameters(), "lr": 1e-5},
            {"params": head.parameters(), "lr": 1e-4},
        ]

        optimizer_settings = {}
        if isinstance(optim, torch.optim.SGD):
            optimizer_settings["momentum"] = 0.9

        sharded_optimizer = optim.OSS(
            params=oss_trainable_params,
            optim=optimizer,
            group=None,
            broadcast_buffer_size=2 ** 10,
            **optimizer_settings,
        )

        oss_ddp_model = DDP(module=oss_model, device_ids=[rank], broadcast_buffers=True)
796

797
798
799
800
        # Define a model to be trained by normal pytorch + DDP
        ddp_trunk = copy.deepcopy(trunk)
        ddp_head = copy.deepcopy(head)
        ddp_module = torch.nn.Sequential(ddp_trunk, ddp_head)
801

802
803
804
805
806
807
        ddp_trainable_params = [
            {"params": ddp_trunk.parameters(), "lr": 1e-5},
            {"params": ddp_head.parameters(), "lr": 1e-4},
        ]
        ddp_optimizer = optimizer(ddp_trainable_params, **optimizer_settings)  # type: ignore
        ddp_model = DDP(module=ddp_module, device_ids=[rank], broadcast_buffers=True)
808
809
810
811
812
813
814
815

        def check_same_model_params():
            for pg, ddp_pg in zip(sharded_optimizer.param_groups, ddp_optimizer.param_groups):
                for p, ddp_p in zip(pg["params"], ddp_pg["params"]):
                    assert torch.allclose(
                        p, ddp_p, atol=1e-3
                    ), f"Model parameters differ in between Pytorch optim and OSS \n{p} {ddp_p}\nworld size {world_size}"

816
            for b, ddp_b in zip(oss_ddp_model.buffers(), ddp_model.buffers()):
817
818
819
820
                assert torch.allclose(
                    b, ddp_b
                ), f"Model buffers differ in between Pytorch optim and OSS\nworld size {world_size}"

821
822
        def check_step():
            input_tensor = torch.rand((batch, in_channels)).to(device)
823
824
825
826
827
828
829
830
831

            def closure_ddp(input_tensor=input_tensor):
                ddp_optimizer.zero_grad()
                ddp_loss = ddp_model(input_tensor).abs().sum()
                ddp_loss.backward()
                return ddp_loss

            def closure_sharded(input_tensor=input_tensor):
                sharded_optimizer.zero_grad()
832
                sharded_loss = oss_ddp_model(input_tensor).abs().sum()
833
834
835
836
837
838
839
840
841
842
                sharded_loss.backward()
                return sharded_loss

            loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
            loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))

            assert torch.allclose(
                loss_ddp, loss_sharded_optim
            ), f"Losses differ in between Pytorch optim and OSS\nworld size {world_size}"

843
844
845
846
847
848
        # The model should be synchronized in between the ranks at construction time, check that
        check_same_model_params()

        # The models should stay the same in between ddp and sharded optimizer
        for i in range(5):
            check_step()
849
850
            check_same_model_params()

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
        # Check that the checkpoints are compatible
        # - get states
        ddp_state_dict = ddp_optimizer.state_dict()
        sharded_optimizer.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)
        sharded_optim_state_dict = sharded_optimizer.state_dict() if rank == RECIPIENT_RANK else {}
        sharded_optim_state_dict = sync_object_ranks(sharded_optim_state_dict, RECIPIENT_RANK, device)

        # - cross load the states
        ddp_optimizer.load_state_dict(sharded_optim_state_dict)  # mixup on purpose !
        sharded_optimizer.load_state_dict(ddp_state_dict)

        # - run one step and check that the models are still the same
        check_step()
        check_same_model_params()

866
867
868
869
870
871
872
873
874
875
876
877
878
    for opt in [torch.optim.SGD, torch.optim.Adam]:
        check_optimizer_equivalence(opt)

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_ddp_parity():
    temp_file_name = tempfile.mkstemp()[1]
    world_size = torch.cuda.device_count()
    backend = dist.Backend.NCCL
    mp.spawn(run_ddp_parity, args=(world_size, backend, temp_file_name), nprocs=world_size, join=True)