test_oss.py 4.6 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

import os

import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

import fairscale.optim as optim

skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")


def setup_module(module):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29500"
    dist.init_process_group(backend="nccl", rank=0, world_size=1)


def dist_init(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29501"
    dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)


def test_create():
    params = [torch.rand(1)]
    o = optim.OSS(params, lr=0.01)


@skip_if_no_cuda
def test_state_dict():
    x = torch.tensor([1.0], device="cuda", requires_grad=True)
    o = optim.OSS([x], lr=0.1)
    state_dict = o.state_dict()
    o = optim.OSS([x], lr=0.01)
    o.load_state_dict(state_dict)
    # We should now be using a lr of 0.1.
    x.backward()
    o.step()
    assert x == torch.tensor([0.9], device="cuda")


def run_test_add_param_group(rank, world_size):
    dist_init(rank, world_size)
    params = []
    for size in [4, 5, 2, 6, 4]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert len(o.param_groups) == 1
    o.add_param_group({"params": [torch.rand(3, 1)]})
    assert len(o.param_groups) == 2
    # Verify that added group is added to the correct partition making all have 8 elements.
    assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == 8
    if rank == 1:
        len(o.optim.param_groups) == 2
    else:
        len(o.optim.param_groups) == 1


def test_add_param_group():
    world_size = 3
    mp.spawn(run_test_add_param_group, args=(world_size,), nprocs=world_size, join=True)


def run_test_zero_grad(rank, world_size):
    dist_init(rank, world_size)
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad


@skip_if_no_cuda
def test_zero_grad():
    world_size = 2
    mp.spawn(run_test_zero_grad, args=(world_size,), nprocs=world_size, join=True)


def run_test_step(rank, world_size):
    dist_init(rank, world_size)
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)


@skip_if_no_cuda
def test_step():
    world_size = 2
    mp.spawn(run_test_step, args=(world_size,), nprocs=world_size, join=True)


def run_test_step_with_closure(rank, world_size):
    dist_init(rank, world_size)
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)


@skip_if_no_cuda
def test_step_with_closure():
    world_size = 2
    mp.spawn(run_test_step_with_closure, args=(world_size,), nprocs=world_size, join=True)


def run_test_sharding(rank, world_size):
    dist_init(rank, world_size)
    params = []
    for size in [5, 4, 2, 6, 4, 3]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == 8


def test_sharding():
    world_size = 3
    mp.spawn(run_test_sharding, args=(world_size,), nprocs=world_size, join=True)