test_oss.py 18.4 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

10

11
12
import copy
from math import inf
13
14
import tempfile
import unittest
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
15

16
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
17
18
19
20
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
21
from torch.nn.parallel import DistributedDataParallel as DDP
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
22
23
24
25
26

import fairscale.optim as optim

skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")

27
28
29
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
30

31
32
33
def dist_init(rank, world_size, tempfile_name, backend=BACKEND):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
34
35


36
37
38
39
class TestSingleRank(unittest.TestCase):
    """
    All the following tests do not check for inter-process communication
    """
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
40

41
42
    def setUp(self):
        dist_init(0, 1, tempfile.mkstemp()[1])
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
43

44
45
    def tearDown(self):
        torch.distributed.destroy_process_group()
46

47
48
49
    def test_create(self):
        params = [torch.rand(1)]
        o = optim.OSS(params, lr=0.01)
50

51
52
53
    def test_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1, momentum=0.9)
54
        x.backward()
55
56
57
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
58
        o.zero_grad()
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
        state_dict = o.state_dict()

        # Check that the state dict is pytorch-compliant key wise
        assert "param_groups" in state_dict.keys()
        assert "state" in state_dict.keys()

        # Check that the pulled state is what we expect, and that we have all the expected keys
        assert state_dict["param_groups"][0]["lr"] == 0.1
        assert state_dict["param_groups"][0]["momentum"] == 0.9
        assert not state_dict["param_groups"][0]["nesterov"]
        assert state_dict["param_groups"][0]["weight_decay"] == 0.0
        assert state_dict["param_groups"][0]["dampening"] == 0.0

        # Check that the pulled state and the .param_groups attribute are in sync
        for k in state_dict["param_groups"][0].keys():
            if k != "params":
                assert state_dict["param_groups"][0][k] == o.param_groups[0][k]

        # Check that it's correctly loaded
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(state_dict)
        # Check that state is correct and on proper device
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)

        # We should now be using a lr of 0.1, both within the optimizer
        # and as exposed by the .param_groups attribute
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
88
        o.step()
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        assert x == torch.tensor([0.71], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)

        # Check that the exposed param_groups are on the proper device
        assert o.param_groups[0]["params"][0].device == x.device

    def test_lr_scheduler(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.01)
        o2 = torch.optim.SGD([x2], lr=0.01)
        s = torch.optim.lr_scheduler.StepLR(o, 1)
        s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
        for _ in range(5):
            x.backward()
            o.zero_grad()
            o.step()
            s.step()
            x2.backward()
            o2.zero_grad()
            o2.step()
            s2.step()
            assert x == x2

    def test_step_with_kwargs(self):
        class SGDWithStepKWArg(torch.optim.SGD):
            def step(self, closure=None, kwarg=[]):
                super().step()
                kwarg.append(5)

        kwarg = []
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
        x.backward()
        o.step(0, kwarg=kwarg)
        assert kwarg == [5]
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_step_with_extra_inner_key(self):
        class SGDWithNewKey(torch.optim.SGD):
            # Dummy optimizer which adds a new key to the param groups
            def step(self, closure=None):
                super().step()
                self.param_groups[0]["new_key"] = 0.1

        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithNewKey, lr=0.1)
        x.backward()
        o.step()
        assert o.param_groups[0]["new_key"] == 0.1
        assert x == torch.tensor([0.9], device=DEVICE)
140

141
142
143
144
    def test_step_without_closure(self):
        class SGDWithoutClosure(torch.optim.SGD):
            def step(self):
                return super().step()
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
        local_state_dict = o.local_state_dict()
        o = optim.OSS([x], lr=0.01)
        o.load_local_state_dict(local_state_dict)
        # We should now be using a lr of 0.1.
        assert o.optim.param_groups[0]["lr"] == 0.1
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_implicit_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
        local_state_dict = o.state_dict()
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(local_state_dict)
        # We should now be using a lr of 0.1.
        assert o.optim.param_groups[0]["lr"] == 0.1
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
177
178


179
180
def run_test_add_param_group(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
181
182
183
184
185
186
187
188
189
    params = []
    for size in [4, 5, 2, 6, 4]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert len(o.param_groups) == 1
    o.add_param_group({"params": [torch.rand(3, 1)]})
    assert len(o.param_groups) == 2
    # Verify that added group is added to the correct partition making all have 8 elements.
    assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == 8
190
    assert len(o.optim.param_groups) == 2
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
191

192
193
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
194
195
196

def test_add_param_group():
    world_size = 3
197
198
    if torch.cuda.device_count() < world_size:
        pytest.skip("Not enough GPUs for NCCL-based test")
199
200
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_add_param_group, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
201
202


203
204
def run_test_zero_grad(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
205
206
207
208
209
210
211
212
213
214
215
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad

216
217
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
218
219
220

def test_zero_grad():
    world_size = 2
221
222
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_zero_grad, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
223
224


225
226
def run_test_step(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)

242
243
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
244
245
246

@skip_if_no_cuda
def test_step():
247
    world_size = min(2, torch.cuda.device_count())
248
249
250
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
251
252


253
254
def run_test_step_with_closure(rank, world_size, tempfile_name, optimizer=None):
    dist_init(rank, world_size, tempfile_name)
255

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
256
257
258
259
260
261
262
263
264
265
266
267
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
268

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
269
    o = optim.OSS(m.parameters(), lr=0.1)
270

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)

290
291
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
292
293
294

@skip_if_no_cuda
def test_step_with_closure():
295
    world_size = min(2, torch.cuda.device_count())
296
297
298
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step_with_closure, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
299
300


301
302
def run_test_sharding(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
303
304
305
306
307
308
    params = []
    for size in [5, 4, 2, 6, 4, 3]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == 8

309
310
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
311
312
313

def test_sharding():
    world_size = 3
314
315
    if torch.cuda.device_count() < world_size:
        pytest.skip("Not enough GPUs for NCCL-based test")
316
317
318
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_sharding, args=(world_size, temp_file_name), nprocs=world_size, join=True)
319
320


321
322
def run_test_collect_shards(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
323
324
325
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
326
    batch, input_width, hidden, target_width = 3, 3, 3, 5
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
356
        assert len(optimizer_state_dict["state"]) == world_size
357
358
359
360
361
362
363
364
365
    else:
        optimizer_state_dict = {}

    optimizer_state_dict = optim.utils.broadcast_object(
        optimizer_state_dict, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
    )

    # Load the optimizer state dict
    optimizer.load_state_dict(optimizer_state_dict)
366
    dist.destroy_process_group()
367
368
369
370


def test_collect_shards():
    world_size = 3
371
372
    temp_file_name = tempfile.mkstemp()[1]

373
374
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
375
376
377
    reference_rank = 0

    mp.spawn(
378
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
379
    )
380
381


382
def run_test_multiple_groups(rank, world_size, tempfile_name):
383
    # Only work with the even ranks, to check that the global_rank indexing is properly used
384
    dist_init(rank=rank, world_size=world_size, tempfile_name=tempfile_name, backend="gloo")
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
                            assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks"

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)

446
447
448
    dist.destroy_process_group(process_group)
    dist.destroy_process_group()

449
450
451

def test_multiple_groups():
    world_size = 6
452
    temp_file_name = tempfile.mkstemp()[1]
453
454

    mp.spawn(
455
        run_test_multiple_groups, args=(world_size, temp_file_name), nprocs=world_size, join=True,
456
    )
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531


def run_gradient_clipping(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)
    NORMS = [1.0, 2.0, 1, 2, inf]
    CLIP_NORM = 0.3

    def check(norm):
        model_oss = torch.nn.Sequential(
            torch.nn.Linear(input_width, hidden),
            torch.nn.Linear(hidden, hidden),
            torch.nn.Linear(hidden, target_width),
        ).to(device)
        model = copy.deepcopy(model_oss)

        # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
        # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
        # gradient norm computation from OSS and adds a dependency.
        # to keep the comparison apples-to-apples DDP is used in both cases
        model_oss = DDP(module=model_oss, device_ids=[rank],)
        sharded_optimizer = optim.OSS(model_oss.parameters(), lr=0.1, momentum=0.99)

        model = DDP(model, device_ids=[rank],)

        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()
        model_oss.zero_grad()

        outputs = model(inputs)
        outputs_oss = model_oss(inputs)

        loss = loss_fn(outputs, target)
        loss.backward()

        loss_oss = loss_fn(outputs_oss, target)
        loss_oss.backward()

        # Check the equivalence with the non-sharded optim
        oss_total_norm = sharded_optimizer.clip_grad_norm(CLIP_NORM, norm_type=norm)
        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM, norm_type=norm)
        assert torch.allclose(oss_total_norm, total_norm), "torch and fairscale should return the same grad norm"

        # Check that the params have indeed been clipped
        for params in sharded_optimizer.per_device_params.values():
            for param in filter(lambda x: x.grad is not None, params[rank]):
                assert torch.norm(param.grad, p=norm) < CLIP_NORM, f"param grad norm above clip : {param.grad}"

    for norm in NORMS:
        print(f"Checking norm {norm}")
        check(norm)

    dist.destroy_process_group()


@skip_if_no_cuda
def test_gradient_clipping():
    world_size = 3
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
    reference_rank = 0

    mp.spawn(
        run_gradient_clipping, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )