test_oss.py 35.1 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

10

11
12
import copy
from math import inf
13
import tempfile
14
from typing import Any, Dict, Type, cast
15
import unittest
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
16

17
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
18
19
20
21
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
22
from torch.nn.parallel import DistributedDataParallel as DDP
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
23
24

import fairscale.optim as optim
25
26
from fairscale.utils.testing import (
    check_same_model_params,
27
    check_same_models_across_ranks,
28
29
30
31
32
    skip_if_no_cuda,
    skip_if_py39_no_cuda,
    skip_if_single_gpu,
    torch_version,
)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
33

34
35
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")
36
RECIPIENT_RANK = 1
37

38
39
40
41
42
43
44
45
46
try:
    from torch.distributed import broadcast_object_list  # noqa

    _torch_broadcast_object = True
except ImportError:
    from fairscale.optim.utils import broadcast_object  # noqa

    _torch_broadcast_object = False

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
47

48
49
50
def dist_init(rank, world_size, tempfile_name, backend=BACKEND):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
51
52


53
54
55
56
57
58
59
60
61
62
63
64
65
def sync_object_ranks(something_to_sync: Any, reference_rank: int, device: torch.device) -> Any:
    if _torch_broadcast_object:
        package = [something_to_sync]
        dist.broadcast_object_list(package, src=reference_rank, group=dist.group.WORLD)
        package_sync = package[0]
    else:
        package_sync = optim.utils.broadcast_object(
            something_to_sync, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
        )

    return package_sync


66
67
68
69
class TestSingleRank(unittest.TestCase):
    """
    All the following tests do not check for inter-process communication
    """
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
70

71
72
    def setUp(self):
        dist_init(0, 1, tempfile.mkstemp()[1])
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
73

74
75
    def tearDown(self):
        torch.distributed.destroy_process_group()
76

77
78
79
    def test_create(self):
        params = [torch.rand(1)]
        o = optim.OSS(params, lr=0.01)
80

81
82
83
    def test_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1, momentum=0.9)
84
        x.backward()
85
86
87
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
88
        o.zero_grad()
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
        state_dict = o.state_dict()

        # Check that the state dict is pytorch-compliant key wise
        assert "param_groups" in state_dict.keys()
        assert "state" in state_dict.keys()

        # Check that the pulled state is what we expect, and that we have all the expected keys
        assert state_dict["param_groups"][0]["lr"] == 0.1
        assert state_dict["param_groups"][0]["momentum"] == 0.9
        assert not state_dict["param_groups"][0]["nesterov"]
        assert state_dict["param_groups"][0]["weight_decay"] == 0.0
        assert state_dict["param_groups"][0]["dampening"] == 0.0

        # Check that the pulled state and the .param_groups attribute are in sync
        for k in state_dict["param_groups"][0].keys():
            if k != "params":
                assert state_dict["param_groups"][0][k] == o.param_groups[0][k]

        # Check that it's correctly loaded
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(state_dict)
        # Check that state is correct and on proper device
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)

        # We should now be using a lr of 0.1, both within the optimizer
        # and as exposed by the .param_groups attribute
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
118
        o.step()
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        assert x == torch.tensor([0.71], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)

        # Check that the exposed param_groups are on the proper device
        assert o.param_groups[0]["params"][0].device == x.device

    def test_lr_scheduler(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.01)
        o2 = torch.optim.SGD([x2], lr=0.01)
        s = torch.optim.lr_scheduler.StepLR(o, 1)
        s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
        for _ in range(5):
            x.backward()
            o.zero_grad()
            o.step()
            s.step()
            x2.backward()
            o2.zero_grad()
            o2.step()
            s2.step()
            assert x == x2

    def test_step_with_kwargs(self):
        class SGDWithStepKWArg(torch.optim.SGD):
            def step(self, closure=None, kwarg=[]):
                super().step()
                kwarg.append(5)

        kwarg = []
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
        x.backward()
        o.step(0, kwarg=kwarg)
        assert kwarg == [5]
        assert x == torch.tensor([0.9], device=DEVICE)

157
158
159
160
161
162
163
164
165
166
167
168
    @skip_if_no_cuda
    def test_device_change(self):
        x = torch.nn.Linear(1, 1).to("cpu")
        o = optim.OSS(x.parameters(), torch.optim.SGD, lr=0.1)

        # Move the model to device after OSS was constructed
        x.to(DEVICE)
        x(torch.zeros((1), device=DEVICE)).backward()

        # Check that OSS detects that the device changed
        o.step()

169
170
171
172
173
174
175
176
177
178
179
180
181
    def test_step_with_extra_inner_key(self):
        class SGDWithNewKey(torch.optim.SGD):
            # Dummy optimizer which adds a new key to the param groups
            def step(self, closure=None):
                super().step()
                self.param_groups[0]["new_key"] = 0.1

        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithNewKey, lr=0.1)
        x.backward()
        o.step()
        assert o.param_groups[0]["new_key"] == 0.1
        assert x == torch.tensor([0.9], device=DEVICE)
182

183
184
185
186
    def test_step_without_closure(self):
        class SGDWithoutClosure(torch.optim.SGD):
            def step(self):
                return super().step()
187

188
189
190
191
192
193
194
195
196
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_implicit_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
197
198
        with pytest.raises(RuntimeError):
            _ = o.state_dict()
199
200


201
202
def run_test_add_param_group(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
203
204
205
206

    # Test with all parameters trainable to begin with
    def all_trainable():
        params = []
207
208
209
        sizes = [9, 7, 5, 3]
        sizes_world = sizes * world_size
        for size in sizes_world[:-1]:
210
211
212
213
214
215
216
217
218
219
220
221
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
222
223
224

        # Verify that added group is added to the correct partition making all have the same number of elements
        assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        assert len(o.optim.param_groups) == 2

    # Test a pathological config with a first big non-trainable param
    def some_trainable():
        params = []
        for size in [100, 3, 5, 2, 6, 4]:
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params[1:]:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
        assert len(o.optim.param_groups) == 2

    all_trainable()
    some_trainable()
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
247

248
249
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
250
251

def test_add_param_group():
252
    world_size = 4
253
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
254
255
        world_size = min(world_size, torch.cuda.device_count())

256
    mp.spawn(run_test_add_param_group, args=(world_size, tempfile.mkstemp()[1]), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
257
258


259
260
def run_test_zero_grad(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
261
262
263
264
265
266
267
268
269
270
271
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad

272
273
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
274
275
276

def test_zero_grad():
    world_size = 2
277
278
279
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        world_size = min(world_size, torch.cuda.device_count())

280
281
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_zero_grad, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
282
283


284
285
def run_test_empty_shard(rank, world_size, tempfile_name, backend):
    dist_init(rank, world_size, tempfile_name, backend=backend)
286
    m = torch.nn.Linear(1, 1)
287
288
289
290
291
292
293
294
295
296
    x = torch.rand(20, 1)

    if torch.cuda.is_available():
        m = m.to(rank)
        x = x.to(rank)

    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x).sum()
    y.backward()
    o.step()
297
298
299
300

    dist.destroy_process_group()


301
302
@pytest.mark.parametrize("backend", ["gloo", "nccl"])
def test_empty_shard(backend):
303
    world_size = 4
304
305
306
307
308
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        world_size = min(world_size, torch.cuda.device_count())
    if world_size == 1 or (backend == "nccl" and not torch.cuda.is_available()):
        pytest.skip("Not enough GPUs to test with NCCL, or CUDA not present")
    mp.spawn(run_test_empty_shard, args=(world_size, tempfile.mkstemp()[1], backend), nprocs=world_size, join=True)
309
310


311
312
def run_test_step(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)

328
329
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
330

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
331
@skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
332
def test_step():
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
333
    world_size = 2
334
335
336
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
337
338


339
340
def run_test_step_with_closure(rank, world_size, tempfile_name, optimizer=None):
    dist_init(rank, world_size, tempfile_name)
341

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
342
343
344
345
346
347
348
349
350
351
352
353
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
354

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
355
    o = optim.OSS(m.parameters(), lr=0.1)
356

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)

376
377
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
378
379
380

@skip_if_no_cuda
def test_step_with_closure():
381
    world_size = min(2, torch.cuda.device_count())
382
383
384
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step_with_closure, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
385
386


387
388
def run_test_sharding(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
389
    params = []
390
391
392
393
    sizes = [9, 7, 5, 3]
    sizes_world = sizes * world_size

    for size in sizes_world:
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
394
        params.append(torch.rand(size, 1))
395
396
397
398
399

    # Make sure that the params are trainable, enforces size-based partitioning
    for p in params:
        p.requires_grad = True

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
400
    o = optim.OSS(params, lr=0.1)
401
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == sum(sizes)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
402

403
404
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
405
406

def test_sharding():
407
408
409
    world_size = 4
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
410

411
    _, temp_file_name = tempfile.mkstemp()
412
    mp.spawn(run_test_sharding, args=(world_size, temp_file_name), nprocs=world_size, join=True)
413
414


415
416
def run_test_collect_shards(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
417
418
419
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
420
    batch, input_width, hidden, target_width = 3, 3, 3, 5
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
450
        assert len(optimizer_state_dict["state"]) == len(list(model.parameters()))
451
452
453
    else:
        optimizer_state_dict = {}

454
455
    # distribute to the other ranks
    optimizer_state_dict = sync_object_ranks(optimizer_state_dict, reference_rank, device)
456
457

    # Load the optimizer state dict
458
    optimizer.load_state_dict(optimizer_state_dict)
459
460
461
462
463

    # Check that the states are not None, but {}
    for state in optimizer.state.values():
        for _, _ in state.items():
            pass
464
465
466
467
468
469
470
471

    # Test the state dict materialization on all ranks
    _ = optimizer.step(closure=closure)
    optimizer_state_dict = optimizer.state_dict(all_ranks=True)  # one per rank
    optimizer.load_state_dict(optimizer_state_dict)
    _ = optimizer.step(closure=closure)
    check_same_models_across_ranks(model, dist.group.WORLD, params_should_be_equal=True, check_broadcast_buffers=False)

472
    dist.destroy_process_group()
473
474


475
476
# TODO(blefaudeux) Fix for torch v1.8.0
@pytest.mark.skipif(torch.__version__.split("+")[0].split(".") == ["1", "8", "0"], reason="disabled for torch 1.8.0")
477
478
def test_collect_shards():
    world_size = 3
479
480
    temp_file_name = tempfile.mkstemp()[1]

481
482
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
483
484
485
    reference_rank = 0

    mp.spawn(
486
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
487
    )
488
489


490
491
492
493
494
495
496
497
498
499
500
def run_test_reproducibility(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 3, 3, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)
501
    model = DDP(model, device_ids=[device])
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    optimizer = optim.OSS(model.parameters(), optim=torch.optim.RMSprop, lr=0.1)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

517
518
519
    # Get a snapshot of the state at this point
    optimizer_state_dict = copy.deepcopy(optimizer.state_dict(all_ranks=True))
    model_state_dict = copy.deepcopy(model.state_dict())
520
521
522
523
524
525
526

    # Run two steps, log the loss
    _ = optimizer.step(closure=closure)
    reference_loss = optimizer.step(closure=closure)

    # Load the optimizer state dict, rewind the state two steps back
    optimizer.load_state_dict(optimizer_state_dict)
527
    model.load_state_dict(model_state_dict)
528
529
530
531
532

    # Run two new steps, log the loss again and check that we get the same
    _ = optimizer.step(closure=closure)
    test_loss = optimizer.step(closure=closure)

533
    assert torch.allclose(reference_loss, test_loss), f"{reference_loss} vs {test_loss}. Reproducibility is broken"
534
535
536
537

    dist.destroy_process_group()


538
539
# TODO(blefaudeux) Fix for torch v1.8.0
@pytest.mark.skipif(torch.__version__.split("+")[0].split(".") == ["1", "8", "0"], reason="disabled for torch 1.8.0")
540
@skip_if_single_gpu
541
542
543
544
545
546
547
548
549
550
551
def test_reproducibility():
    world_size = 2
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        # Bail out if not enough devices
        return

    reference_rank = 0

    mp.spawn(
552
        run_test_reproducibility, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
553
554
555
    )


556
def run_test_multiple_groups(rank, world_size, tempfile_name):
557
    # Only work with the even ranks, to check that the global_rank indexing is properly used
558
    dist_init(rank=rank, world_size=world_size, tempfile_name=tempfile_name, backend="gloo")
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
597
598
599
600
601
                            assert torch.all(
                                torch.eq(receptacle[0], sync_p)
                            ), "Models differ in between ranks {} - {}".format(
                                torch.norm(receptacle[0]), torch.norm(sync_p)
                            )
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)

624
625
    dist.destroy_process_group(process_group)

626

627
@skip_if_py39_no_cuda
628
629
def test_multiple_groups():
    world_size = 6
630
    temp_file_name = tempfile.mkstemp()[1]
631
632

    mp.spawn(
633
        run_test_multiple_groups, args=(world_size, temp_file_name), nprocs=world_size, join=True,
634
    )
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679


def run_gradient_clipping(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)
    NORMS = [1.0, 2.0, 1, 2, inf]
    CLIP_NORM = 0.3

    def check(norm):
        model_oss = torch.nn.Sequential(
            torch.nn.Linear(input_width, hidden),
            torch.nn.Linear(hidden, hidden),
            torch.nn.Linear(hidden, target_width),
        ).to(device)
        model = copy.deepcopy(model_oss)

        # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
        # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
        # gradient norm computation from OSS and adds a dependency.
        # to keep the comparison apples-to-apples DDP is used in both cases
        model_oss = DDP(module=model_oss, device_ids=[rank],)
        sharded_optimizer = optim.OSS(model_oss.parameters(), lr=0.1, momentum=0.99)

        model = DDP(model, device_ids=[rank],)

        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()
        model_oss.zero_grad()

        outputs = model(inputs)
        outputs_oss = model_oss(inputs)

        loss = loss_fn(outputs, target)
        loss.backward()

        loss_oss = loss_fn(outputs_oss, target)
        loss_oss.backward()
680
        torch.testing.assert_allclose(loss_oss, loss)
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

        # Check the equivalence with the non-sharded optim
        oss_total_norm = sharded_optimizer.clip_grad_norm(CLIP_NORM, norm_type=norm)
        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM, norm_type=norm)
        assert torch.allclose(oss_total_norm, total_norm), "torch and fairscale should return the same grad norm"

        # Check that the params have indeed been clipped
        for params in sharded_optimizer.per_device_params.values():
            for param in filter(lambda x: x.grad is not None, params[rank]):
                assert torch.norm(param.grad, p=norm) < CLIP_NORM, f"param grad norm above clip : {param.grad}"

    for norm in NORMS:
        print(f"Checking norm {norm}")
        check(norm)

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
696
697
698
        # Check twice, catch an hypothetic iterator dumb mistake
        check(norm)

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    dist.destroy_process_group()


@skip_if_no_cuda
def test_gradient_clipping():
    world_size = 3
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
    reference_rank = 0

    mp.spawn(
        run_gradient_clipping, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
714
715
716
717


def run_state_dict_distributed(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
718

719
720
721
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

722
723
    # Setup two problems in parallel, we'll make sure that the second track (with save/load) follows the first one(untouched)
    # We split the model in two to test the multiple param groups support
724
725
726
727
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

728
    model_oss1 = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, hidden)).to(device)
729
730
    head_oss1 = torch.nn.Linear(hidden, target_width).to(device)

731
    model_oss2 = copy.deepcopy(model_oss1)
732
    head_oss2 = copy.deepcopy(head_oss1)
733
734
735
736
737
738
739

    # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
    # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
    # gradient norm computation from OSS and adds a dependency.
    # to keep the comparison apples-to-apples DDP is used in both cases
    model_oss1 = DDP(module=model_oss1, device_ids=[rank],)
    sharded_optimizer1 = optim.OSS(model_oss1.parameters(), lr=0.1, momentum=0.99)
740
741
    sharded_optimizer1.add_param_group({"params": head_oss1.parameters()})

742
743
    model_oss2 = DDP(module=model_oss2, device_ids=[rank],)
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
744
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
745

746
    loss_fn = torch.nn.L1Loss().to(device)
747

748
    def run_grad_step(model, head, optimizer):
749
        model.zero_grad()
750
        outputs = head(model(inputs))
751

752
753
754
755
    # pull the current state, broadcast it to all ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
756

757
758
    # re-create a new optimizer from scratch with absurd values, load the previous state
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=1e6, momentum=0.0001)
759
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
760
    sharded_optimizer2.load_state_dict(state_dict2)
761
762
763
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (before any steps)"
    )
764
765

    # now take a step and check that parameters are equal
766
767
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
768
769
770
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after stepping)"
    )
771

772
773
774
775
    # save the state dict for one model only, then distribute to the other ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
776
777
778
779
780
781
782
783

    # Check that the pulled state and the .param_groups attribute are in sync
    for replica in range(len(state_dict2["param_groups"])):
        for k in state_dict2["param_groups"][replica].keys():
            if k != "params":
                assert state_dict2["param_groups"][replica][k] == sharded_optimizer2.param_groups[0][k]

    # take a step
784
785
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
786
787
788
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after consolidating)"
    )
789

790
791
792
793
    # save again for one rank, then distribute to the others
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
794
795
796

    # reload the state_dict
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
797
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
798
799
800
    sharded_optimizer2.load_state_dict(state_dict2)

    # take a step
801
802
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
803
804
805
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after reloading)"
    )
806
807
808
809
810
811

    dist.destroy_process_group()


@skip_if_no_cuda
def test_state_dict_distributed():
812
    world_size = 2
813
814
815
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
816
        world_size = max(world_size, torch.cuda.device_count())
817
818
819
820

    mp.spawn(
        run_state_dict_distributed, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
821
822


823
def run_ddp_parity(rank, world_size, backend, temp_file_name, change_train_graph):
824
825
826
827
828
829
830
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)

    device = torch.device("cuda")
    torch.cuda.set_device(rank)
    torch.manual_seed(rank)
    np.random.seed(rank)
831
832
833
834
    hidden = 5
    in_channels = 3
    out_channels = 3
    batch = 64
835

836
    def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer], change_train_graph: bool = False):
837
        # Any model works. Add one different buffer per rank
838
839
840
        trunk = torch.nn.Sequential(
            torch.nn.Linear(in_channels, hidden), torch.nn.Linear(hidden, hidden), torch.nn.Linear(hidden, hidden)
        )
841
842
843
844
845
846
        trunk.register_buffer("test_buffer", torch.ones((1)) * rank)
        trunk.to(device)

        head = torch.nn.Linear(hidden, out_channels).to(device)

        # Define a model to be trained by OSS
847
        oss_module = torch.nn.Sequential(trunk, head)
848
849

        # Make sure that the param groups are interleaved, to catch an ordering bug in the state dict
850
        oss_trainable_params = [
851
852
            {"params": list(trunk.parameters())[:-1] + list(head.parameters()), "lr": 1e-5},
            {"params": list(trunk.parameters())[-1], "lr": 1e-4},
853
854
        ]

855
856
        optimizer_settings: Dict[Any, Any] = {}
        if isinstance(optimizer, torch.optim.SGD):
857
858
859
860
861
862
863
864
865
866
            optimizer_settings["momentum"] = 0.9

        sharded_optimizer = optim.OSS(
            params=oss_trainable_params,
            optim=optimizer,
            group=None,
            broadcast_buffer_size=2 ** 10,
            **optimizer_settings,
        )

867
        oss_ddp_model = DDP(module=oss_module, device_ids=[rank], broadcast_buffers=True, find_unused_parameters=True)
868

869
870
871
872
        # Define a model to be trained by normal pytorch + DDP
        ddp_trunk = copy.deepcopy(trunk)
        ddp_head = copy.deepcopy(head)
        ddp_module = torch.nn.Sequential(ddp_trunk, ddp_head)
873

874
        ddp_trainable_params = [
875
876
            {"params": list(ddp_trunk.parameters())[:-1] + list(ddp_head.parameters()), "lr": 1e-5},
            {"params": list(ddp_trunk.parameters())[-1], "lr": 1e-4},
877
878
        ]
        ddp_optimizer = optimizer(ddp_trainable_params, **optimizer_settings)  # type: ignore
879
        ddp_model = DDP(module=ddp_module, device_ids=[rank], broadcast_buffers=True, find_unused_parameters=True)
880

881
882
        def check_step():
            input_tensor = torch.rand((batch, in_channels)).to(device)
883
884
885
886
887
888
889
890
891

            def closure_ddp(input_tensor=input_tensor):
                ddp_optimizer.zero_grad()
                ddp_loss = ddp_model(input_tensor).abs().sum()
                ddp_loss.backward()
                return ddp_loss

            def closure_sharded(input_tensor=input_tensor):
                sharded_optimizer.zero_grad()
892
                sharded_loss = oss_ddp_model(input_tensor).abs().sum()
893
894
895
896
897
898
899
                sharded_loss.backward()
                return sharded_loss

            loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
            loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))

            assert torch.allclose(
900
901
                loss_ddp, loss_sharded_optim, rtol=1e-3
            ), f"Losses differ in between Pytorch optim and OSS\n {loss_ddp.item()} - {loss_sharded_optim.item()} - world size {world_size}"
902

903
904
            check_same_model_params(oss_ddp_model, ddp_model)

905
        # The model should be synchronized in between the ranks at construction time, check that
906
        check_same_model_params(oss_ddp_model, ddp_model)
907
908
909
910

        # The models should stay the same in between ddp and sharded optimizer
        for i in range(5):
            check_step()
911
912
913
914
915
916
917

            # Check that altering the trainable parameters does not cause DDP and OSS to diverge
            if change_train_graph:
                # Flip the first parameter from trainable to non-trainable and vice-versa
                next(ddp_module.parameters()).requires_grad = not next(ddp_module.parameters()).requires_grad
                next(oss_module.parameters()).requires_grad = not next(oss_module.parameters()).requires_grad
                # sharded_optimizer.refresh_trainable()
918

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
        # Check that the checkpoints are compatible (post pytorch 1.5)
        if torch_version()[1] > 5:
            # - get states
            ddp_state_dict = ddp_optimizer.state_dict()
            sharded_optimizer.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)
            sharded_optim_state_dict = sharded_optimizer.state_dict() if rank == RECIPIENT_RANK else {}
            sharded_optim_state_dict = sync_object_ranks(sharded_optim_state_dict, RECIPIENT_RANK, device)

            # - cross load the states
            # run one step and check that the models are still the same
            ddp_state_dict_ref = copy.deepcopy(ddp_state_dict)  # OSS will remove some states
            ddp_optimizer.load_state_dict(sharded_optim_state_dict)  # mixup on purpose !
            sharded_optimizer.load_state_dict(ddp_state_dict)
            check_step()

            #  - self load, rewind, check no problem
            # run one step and check that the models are still the same
            ddp_optimizer.load_state_dict(ddp_state_dict_ref)
            sharded_optimizer.load_state_dict(sharded_optim_state_dict)
            check_step()
939

940
    for opt in [torch.optim.Adam, torch.optim.SGD]:
941
        check_optimizer_equivalence(opt, change_train_graph=change_train_graph)
942
943
944
945
946
947

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
948
949
950
@pytest.mark.parametrize("change_train_graph", [True, False])
@pytest.mark.parametrize("backend", [dist.Backend.NCCL, dist.Backend.GLOO])
def test_ddp_parity(change_train_graph: bool, backend: dist.Backend):
951
952
    temp_file_name = tempfile.mkstemp()[1]
    world_size = torch.cuda.device_count()
953
954
955
    mp.spawn(
        run_ddp_parity, args=(world_size, backend, temp_file_name, change_train_graph), nprocs=world_size, join=True
    )