test_oss.py 32.9 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

10

11
12
import copy
from math import inf
13
import tempfile
14
from typing import Any, Dict, Type, cast
15
import unittest
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
16

17
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
18
19
20
21
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
22
from torch.nn.parallel import DistributedDataParallel as DDP
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
23
24

import fairscale.optim as optim
25
from fairscale.utils.testing import check_same_model_params, skip_if_no_cuda, skip_if_py39_no_cuda, skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
26

27
28
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")
29
RECIPIENT_RANK = 1
30

31
32
33
34
35
36
37
38
39
try:
    from torch.distributed import broadcast_object_list  # noqa

    _torch_broadcast_object = True
except ImportError:
    from fairscale.optim.utils import broadcast_object  # noqa

    _torch_broadcast_object = False

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
40

41
42
43
def dist_init(rank, world_size, tempfile_name, backend=BACKEND):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
44
45


46
47
48
49
50
51
52
53
54
55
56
57
58
def sync_object_ranks(something_to_sync: Any, reference_rank: int, device: torch.device) -> Any:
    if _torch_broadcast_object:
        package = [something_to_sync]
        dist.broadcast_object_list(package, src=reference_rank, group=dist.group.WORLD)
        package_sync = package[0]
    else:
        package_sync = optim.utils.broadcast_object(
            something_to_sync, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
        )

    return package_sync


59
60
61
62
class TestSingleRank(unittest.TestCase):
    """
    All the following tests do not check for inter-process communication
    """
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
63

64
65
    def setUp(self):
        dist_init(0, 1, tempfile.mkstemp()[1])
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
66

67
68
    def tearDown(self):
        torch.distributed.destroy_process_group()
69

70
71
72
    def test_create(self):
        params = [torch.rand(1)]
        o = optim.OSS(params, lr=0.01)
73

74
75
76
    def test_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1, momentum=0.9)
77
        x.backward()
78
79
80
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
81
        o.zero_grad()
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
        state_dict = o.state_dict()

        # Check that the state dict is pytorch-compliant key wise
        assert "param_groups" in state_dict.keys()
        assert "state" in state_dict.keys()

        # Check that the pulled state is what we expect, and that we have all the expected keys
        assert state_dict["param_groups"][0]["lr"] == 0.1
        assert state_dict["param_groups"][0]["momentum"] == 0.9
        assert not state_dict["param_groups"][0]["nesterov"]
        assert state_dict["param_groups"][0]["weight_decay"] == 0.0
        assert state_dict["param_groups"][0]["dampening"] == 0.0

        # Check that the pulled state and the .param_groups attribute are in sync
        for k in state_dict["param_groups"][0].keys():
            if k != "params":
                assert state_dict["param_groups"][0][k] == o.param_groups[0][k]

        # Check that it's correctly loaded
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(state_dict)
        # Check that state is correct and on proper device
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)

        # We should now be using a lr of 0.1, both within the optimizer
        # and as exposed by the .param_groups attribute
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
111
        o.step()
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        assert x == torch.tensor([0.71], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)

        # Check that the exposed param_groups are on the proper device
        assert o.param_groups[0]["params"][0].device == x.device

    def test_lr_scheduler(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.01)
        o2 = torch.optim.SGD([x2], lr=0.01)
        s = torch.optim.lr_scheduler.StepLR(o, 1)
        s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
        for _ in range(5):
            x.backward()
            o.zero_grad()
            o.step()
            s.step()
            x2.backward()
            o2.zero_grad()
            o2.step()
            s2.step()
            assert x == x2

    def test_step_with_kwargs(self):
        class SGDWithStepKWArg(torch.optim.SGD):
            def step(self, closure=None, kwarg=[]):
                super().step()
                kwarg.append(5)

        kwarg = []
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
        x.backward()
        o.step(0, kwarg=kwarg)
        assert kwarg == [5]
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_step_with_extra_inner_key(self):
        class SGDWithNewKey(torch.optim.SGD):
            # Dummy optimizer which adds a new key to the param groups
            def step(self, closure=None):
                super().step()
                self.param_groups[0]["new_key"] = 0.1

        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithNewKey, lr=0.1)
        x.backward()
        o.step()
        assert o.param_groups[0]["new_key"] == 0.1
        assert x == torch.tensor([0.9], device=DEVICE)
163

164
165
166
167
    def test_step_without_closure(self):
        class SGDWithoutClosure(torch.optim.SGD):
            def step(self):
                return super().step()
168

169
170
171
172
173
174
175
176
177
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_implicit_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
178
179
        with pytest.raises(RuntimeError):
            _ = o.state_dict()
180
181


182
183
def run_test_add_param_group(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
184
185
186
187

    # Test with all parameters trainable to begin with
    def all_trainable():
        params = []
188
189
190
        sizes = [9, 7, 5, 3]
        sizes_world = sizes * world_size
        for size in sizes_world[:-1]:
191
192
193
194
195
196
197
198
199
200
201
202
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
203
204
205

        # Verify that added group is added to the correct partition making all have the same number of elements
        assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        assert len(o.optim.param_groups) == 2

    # Test a pathological config with a first big non-trainable param
    def some_trainable():
        params = []
        for size in [100, 3, 5, 2, 6, 4]:
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params[1:]:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
        assert len(o.optim.param_groups) == 2

    all_trainable()
    some_trainable()
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
228

229
230
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
231
232

def test_add_param_group():
233
    world_size = 4
234
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
235
236
        world_size = min(world_size, torch.cuda.device_count())

237
    mp.spawn(run_test_add_param_group, args=(world_size, tempfile.mkstemp()[1]), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
238
239


240
241
def run_test_zero_grad(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
242
243
244
245
246
247
248
249
250
251
252
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad

253
254
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
255
256
257

def test_zero_grad():
    world_size = 2
258
259
260
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        world_size = min(world_size, torch.cuda.device_count())

261
262
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_zero_grad, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
263
264


265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
def run_test_catch_empty_shardd(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    m = torch.nn.Linear(1, 1)
    with pytest.raises(AssertionError):
        _ = optim.OSS(m.parameters(), lr=0.1)

    dist.destroy_process_group()


def test_empty_shard():
    world_size = 4

    mp.spawn(run_test_catch_empty_shardd, args=(world_size, tempfile.mkstemp()[1]), nprocs=world_size, join=True)


280
281
def run_test_step(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)

297
298
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
299

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
300
@skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
301
def test_step():
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
302
    world_size = 2
303
304
305
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
306
307


308
309
def run_test_step_with_closure(rank, world_size, tempfile_name, optimizer=None):
    dist_init(rank, world_size, tempfile_name)
310

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
311
312
313
314
315
316
317
318
319
320
321
322
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
323

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
324
    o = optim.OSS(m.parameters(), lr=0.1)
325

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)

345
346
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
347
348
349

@skip_if_no_cuda
def test_step_with_closure():
350
    world_size = min(2, torch.cuda.device_count())
351
352
353
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step_with_closure, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
354
355


356
357
def run_test_sharding(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
358
    params = []
359
360
361
362
    sizes = [9, 7, 5, 3]
    sizes_world = sizes * world_size

    for size in sizes_world:
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
363
        params.append(torch.rand(size, 1))
364
365
366
367
368

    # Make sure that the params are trainable, enforces size-based partitioning
    for p in params:
        p.requires_grad = True

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
369
    o = optim.OSS(params, lr=0.1)
370
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == sum(sizes)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
371

372
373
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
374
375

def test_sharding():
376
377
378
    world_size = 4
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
379

380
    _, temp_file_name = tempfile.mkstemp()
381
    mp.spawn(run_test_sharding, args=(world_size, temp_file_name), nprocs=world_size, join=True)
382
383


384
385
def run_test_collect_shards(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
386
387
388
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
389
    batch, input_width, hidden, target_width = 3, 3, 3, 5
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
419
        assert len(optimizer_state_dict["state"]) == len(list(model.parameters()))
420
421
422
    else:
        optimizer_state_dict = {}

423
424
    # distribute to the other ranks
    optimizer_state_dict = sync_object_ranks(optimizer_state_dict, reference_rank, device)
425
426

    # Load the optimizer state dict
427
    optimizer.load_state_dict(optimizer_state_dict)
428
    dist.destroy_process_group()
429
430
431
432


def test_collect_shards():
    world_size = 3
433
434
    temp_file_name = tempfile.mkstemp()[1]

435
436
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
437
438
439
    reference_rank = 0

    mp.spawn(
440
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
441
    )
442
443


444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
def run_test_reproducibility(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 3, 3, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    optimizer = optim.OSS(model.parameters(), optim=torch.optim.RMSprop, lr=0.1)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank, broadcast to the other ones
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
    else:
        optimizer_state_dict = {}

    # Run two steps, log the loss
    _ = optimizer.step(closure=closure)
    reference_loss = optimizer.step(closure=closure)

    # Load the optimizer state dict, rewind the state two steps back
    optimizer.load_state_dict(optimizer_state_dict)

    # Run two new steps, log the loss again and check that we get the same
    _ = optimizer.step(closure=closure)
    test_loss = optimizer.step(closure=closure)

    assert torch.allclose(reference_loss, test_loss)

    dist.destroy_process_group()


def test_reproducibility():
    world_size = 2
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        # Bail out if not enough devices
        return

    reference_rank = 0

    mp.spawn(
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
    )


510
def run_test_multiple_groups(rank, world_size, tempfile_name):
511
    # Only work with the even ranks, to check that the global_rank indexing is properly used
512
    dist_init(rank=rank, world_size=world_size, tempfile_name=tempfile_name, backend="gloo")
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
551
552
553
554
555
                            assert torch.all(
                                torch.eq(receptacle[0], sync_p)
                            ), "Models differ in between ranks {} - {}".format(
                                torch.norm(receptacle[0]), torch.norm(sync_p)
                            )
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)

578
579
    dist.destroy_process_group(process_group)

580

581
@skip_if_py39_no_cuda
582
583
def test_multiple_groups():
    world_size = 6
584
    temp_file_name = tempfile.mkstemp()[1]
585
586

    mp.spawn(
587
        run_test_multiple_groups, args=(world_size, temp_file_name), nprocs=world_size, join=True,
588
    )
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633


def run_gradient_clipping(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)
    NORMS = [1.0, 2.0, 1, 2, inf]
    CLIP_NORM = 0.3

    def check(norm):
        model_oss = torch.nn.Sequential(
            torch.nn.Linear(input_width, hidden),
            torch.nn.Linear(hidden, hidden),
            torch.nn.Linear(hidden, target_width),
        ).to(device)
        model = copy.deepcopy(model_oss)

        # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
        # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
        # gradient norm computation from OSS and adds a dependency.
        # to keep the comparison apples-to-apples DDP is used in both cases
        model_oss = DDP(module=model_oss, device_ids=[rank],)
        sharded_optimizer = optim.OSS(model_oss.parameters(), lr=0.1, momentum=0.99)

        model = DDP(model, device_ids=[rank],)

        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()
        model_oss.zero_grad()

        outputs = model(inputs)
        outputs_oss = model_oss(inputs)

        loss = loss_fn(outputs, target)
        loss.backward()

        loss_oss = loss_fn(outputs_oss, target)
        loss_oss.backward()
634
        torch.testing.assert_allclose(loss_oss, loss)
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

        # Check the equivalence with the non-sharded optim
        oss_total_norm = sharded_optimizer.clip_grad_norm(CLIP_NORM, norm_type=norm)
        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM, norm_type=norm)
        assert torch.allclose(oss_total_norm, total_norm), "torch and fairscale should return the same grad norm"

        # Check that the params have indeed been clipped
        for params in sharded_optimizer.per_device_params.values():
            for param in filter(lambda x: x.grad is not None, params[rank]):
                assert torch.norm(param.grad, p=norm) < CLIP_NORM, f"param grad norm above clip : {param.grad}"

    for norm in NORMS:
        print(f"Checking norm {norm}")
        check(norm)

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
650
651
652
        # Check twice, catch an hypothetic iterator dumb mistake
        check(norm)

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    dist.destroy_process_group()


@skip_if_no_cuda
def test_gradient_clipping():
    world_size = 3
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
    reference_rank = 0

    mp.spawn(
        run_gradient_clipping, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
668
669
670
671


def run_state_dict_distributed(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
672

673
674
675
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

676
677
    # Setup two problems in parallel, we'll make sure that the second track (with save/load) follows the first one(untouched)
    # We split the model in two to test the multiple param groups support
678
679
680
681
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

682
    model_oss1 = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, hidden)).to(device)
683
684
    head_oss1 = torch.nn.Linear(hidden, target_width).to(device)

685
    model_oss2 = copy.deepcopy(model_oss1)
686
    head_oss2 = copy.deepcopy(head_oss1)
687
688
689
690
691
692
693

    # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
    # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
    # gradient norm computation from OSS and adds a dependency.
    # to keep the comparison apples-to-apples DDP is used in both cases
    model_oss1 = DDP(module=model_oss1, device_ids=[rank],)
    sharded_optimizer1 = optim.OSS(model_oss1.parameters(), lr=0.1, momentum=0.99)
694
695
    sharded_optimizer1.add_param_group({"params": head_oss1.parameters()})

696
697
    model_oss2 = DDP(module=model_oss2, device_ids=[rank],)
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
698
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
699

700
    loss_fn = torch.nn.L1Loss().to(device)
701

702
    def run_grad_step(model, head, optimizer):
703
        model.zero_grad()
704
        outputs = head(model(inputs))
705

706
707
708
709
    # pull the current state, broadcast it to all ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
710

711
712
    # re-create a new optimizer from scratch with absurd values, load the previous state
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=1e6, momentum=0.0001)
713
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
714
    sharded_optimizer2.load_state_dict(state_dict2)
715
716
717
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (before any steps)"
    )
718
719

    # now take a step and check that parameters are equal
720
721
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
722
723
724
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after stepping)"
    )
725

726
727
728
729
    # save the state dict for one model only, then distribute to the other ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
730
731
732
733
734
735
736
737

    # Check that the pulled state and the .param_groups attribute are in sync
    for replica in range(len(state_dict2["param_groups"])):
        for k in state_dict2["param_groups"][replica].keys():
            if k != "params":
                assert state_dict2["param_groups"][replica][k] == sharded_optimizer2.param_groups[0][k]

    # take a step
738
739
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
740
741
742
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after consolidating)"
    )
743

744
745
746
747
    # save again for one rank, then distribute to the others
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
748
749
750

    # reload the state_dict
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
751
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
752
753
754
    sharded_optimizer2.load_state_dict(state_dict2)

    # take a step
755
756
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
757
758
759
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after reloading)"
    )
760
761
762
763
764
765

    dist.destroy_process_group()


@skip_if_no_cuda
def test_state_dict_distributed():
766
    world_size = 2
767
768
769
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
770
        world_size = max(world_size, torch.cuda.device_count())
771
772
773
774

    mp.spawn(
        run_state_dict_distributed, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
775
776
777
778
779
780
781
782
783
784


def run_ddp_parity(rank, world_size, backend, temp_file_name):
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)

    device = torch.device("cuda")
    torch.cuda.set_device(rank)
    torch.manual_seed(rank)
    np.random.seed(rank)
785
786
787
788
    hidden = 5
    in_channels = 3
    out_channels = 3
    batch = 64
789

790
    def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer], change_train_graph: bool = False):
791
        # Any model works. Add one different buffer per rank
792
793
794
        trunk = torch.nn.Sequential(
            torch.nn.Linear(in_channels, hidden), torch.nn.Linear(hidden, hidden), torch.nn.Linear(hidden, hidden)
        )
795
796
797
798
799
800
        trunk.register_buffer("test_buffer", torch.ones((1)) * rank)
        trunk.to(device)

        head = torch.nn.Linear(hidden, out_channels).to(device)

        # Define a model to be trained by OSS
801
        oss_module = torch.nn.Sequential(trunk, head)
802
803
804
805
806
        oss_trainable_params = [
            {"params": trunk.parameters(), "lr": 1e-5},
            {"params": head.parameters(), "lr": 1e-4},
        ]

807
808
        optimizer_settings: Dict[Any, Any] = {}
        if isinstance(optimizer, torch.optim.SGD):
809
810
811
812
813
814
815
816
817
818
            optimizer_settings["momentum"] = 0.9

        sharded_optimizer = optim.OSS(
            params=oss_trainable_params,
            optim=optimizer,
            group=None,
            broadcast_buffer_size=2 ** 10,
            **optimizer_settings,
        )

819
        oss_ddp_model = DDP(module=oss_module, device_ids=[rank], broadcast_buffers=True, find_unused_parameters=True)
820

821
822
823
824
        # Define a model to be trained by normal pytorch + DDP
        ddp_trunk = copy.deepcopy(trunk)
        ddp_head = copy.deepcopy(head)
        ddp_module = torch.nn.Sequential(ddp_trunk, ddp_head)
825

826
827
828
829
830
        ddp_trainable_params = [
            {"params": ddp_trunk.parameters(), "lr": 1e-5},
            {"params": ddp_head.parameters(), "lr": 1e-4},
        ]
        ddp_optimizer = optimizer(ddp_trainable_params, **optimizer_settings)  # type: ignore
831
        ddp_model = DDP(module=ddp_module, device_ids=[rank], broadcast_buffers=True, find_unused_parameters=True)
832

833
834
        def check_step():
            input_tensor = torch.rand((batch, in_channels)).to(device)
835
836
837
838
839
840
841
842
843

            def closure_ddp(input_tensor=input_tensor):
                ddp_optimizer.zero_grad()
                ddp_loss = ddp_model(input_tensor).abs().sum()
                ddp_loss.backward()
                return ddp_loss

            def closure_sharded(input_tensor=input_tensor):
                sharded_optimizer.zero_grad()
844
                sharded_loss = oss_ddp_model(input_tensor).abs().sum()
845
846
847
848
849
850
851
                sharded_loss.backward()
                return sharded_loss

            loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
            loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))

            assert torch.allclose(
852
853
                loss_ddp, loss_sharded_optim, rtol=1e-3
            ), f"Losses differ in between Pytorch optim and OSS\n {loss_ddp.item()} - {loss_sharded_optim.item()} - world size {world_size}"
854

855
856
            check_same_model_params(oss_ddp_model, ddp_model)

857
        # The model should be synchronized in between the ranks at construction time, check that
858
        check_same_model_params(oss_ddp_model, ddp_model)
859
860
861
862

        # The models should stay the same in between ddp and sharded optimizer
        for i in range(5):
            check_step()
863
864
865
866
867
868
869

            # Check that altering the trainable parameters does not cause DDP and OSS to diverge
            if change_train_graph:
                # Flip the first parameter from trainable to non-trainable and vice-versa
                next(ddp_module.parameters()).requires_grad = not next(ddp_module.parameters()).requires_grad
                next(oss_module.parameters()).requires_grad = not next(oss_module.parameters()).requires_grad
                # sharded_optimizer.refresh_trainable()
870

871
872
873
874
875
876
877
878
        # Check that the checkpoints are compatible
        # - get states
        ddp_state_dict = ddp_optimizer.state_dict()
        sharded_optimizer.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)
        sharded_optim_state_dict = sharded_optimizer.state_dict() if rank == RECIPIENT_RANK else {}
        sharded_optim_state_dict = sync_object_ranks(sharded_optim_state_dict, RECIPIENT_RANK, device)

        # - cross load the states
879
880
        # run one step and check that the models are still the same
        ddp_state_dict_ref = copy.deepcopy(ddp_state_dict)  # OSS will remove some states
881
882
        ddp_optimizer.load_state_dict(sharded_optim_state_dict)  # mixup on purpose !
        sharded_optimizer.load_state_dict(ddp_state_dict)
883
        check_step()
884

885
886
887
888
        #  - self load, rewind, check no problem
        # run one step and check that the models are still the same
        ddp_optimizer.load_state_dict(ddp_state_dict_ref)
        sharded_optimizer.load_state_dict(sharded_optim_state_dict)
889
890
        check_step()

891
892
893
    for opt in [torch.optim.Adam, torch.optim.SGD]:
        check_optimizer_equivalence(opt, change_train_graph=False)
        check_optimizer_equivalence(opt, change_train_graph=True)
894
895
896
897
898
899
900
901
902
903
904

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_ddp_parity():
    temp_file_name = tempfile.mkstemp()[1]
    world_size = torch.cuda.device_count()
    backend = dist.Backend.NCCL
    mp.spawn(run_ddp_parity, args=(world_size, backend, temp_file_name), nprocs=world_size, join=True)