test_oss.py 35.2 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

10

11
12
import copy
from math import inf
13
import tempfile
14
from typing import Any, Dict, Type, cast
15
import unittest
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
16

17
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
18
19
20
21
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
22
from torch.nn.parallel import DistributedDataParallel as DDP
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
23
24

import fairscale.optim as optim
25
26
from fairscale.utils.testing import (
    check_same_model_params,
27
    check_same_models_across_ranks,
28
29
30
31
32
    skip_if_no_cuda,
    skip_if_py39_no_cuda,
    skip_if_single_gpu,
    torch_version,
)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
33

34
35
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")
36
RECIPIENT_RANK = 1
37

38
39
40
41
42
43
44
45
46
try:
    from torch.distributed import broadcast_object_list  # noqa

    _torch_broadcast_object = True
except ImportError:
    from fairscale.optim.utils import broadcast_object  # noqa

    _torch_broadcast_object = False

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
47

48
49
50
def dist_init(rank, world_size, tempfile_name, backend=BACKEND):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
51
52


53
54
55
56
57
58
59
60
61
62
63
64
65
def sync_object_ranks(something_to_sync: Any, reference_rank: int, device: torch.device) -> Any:
    if _torch_broadcast_object:
        package = [something_to_sync]
        dist.broadcast_object_list(package, src=reference_rank, group=dist.group.WORLD)
        package_sync = package[0]
    else:
        package_sync = optim.utils.broadcast_object(
            something_to_sync, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
        )

    return package_sync


66
67
68
69
class TestSingleRank(unittest.TestCase):
    """
    All the following tests do not check for inter-process communication
    """
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
70

71
72
    def setUp(self):
        dist_init(0, 1, tempfile.mkstemp()[1])
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
73

74
75
    def tearDown(self):
        torch.distributed.destroy_process_group()
76

77
78
79
    def test_create(self):
        params = [torch.rand(1)]
        o = optim.OSS(params, lr=0.01)
80

81
82
83
    def test_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1, momentum=0.9)
84
        x.backward()
85
86
87
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
88
        o.zero_grad()
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
        state_dict = o.state_dict()

        # Check that the state dict is pytorch-compliant key wise
        assert "param_groups" in state_dict.keys()
        assert "state" in state_dict.keys()

        # Check that the pulled state is what we expect, and that we have all the expected keys
        assert state_dict["param_groups"][0]["lr"] == 0.1
        assert state_dict["param_groups"][0]["momentum"] == 0.9
        assert not state_dict["param_groups"][0]["nesterov"]
        assert state_dict["param_groups"][0]["weight_decay"] == 0.0
        assert state_dict["param_groups"][0]["dampening"] == 0.0

        # Check that the pulled state and the .param_groups attribute are in sync
        for k in state_dict["param_groups"][0].keys():
            if k != "params":
                assert state_dict["param_groups"][0][k] == o.param_groups[0][k]

        # Check that it's correctly loaded
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(state_dict)
        # Check that state is correct and on proper device
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)

        # We should now be using a lr of 0.1, both within the optimizer
        # and as exposed by the .param_groups attribute
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
118
        o.step()
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        assert x == torch.tensor([0.71], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)

        # Check that the exposed param_groups are on the proper device
        assert o.param_groups[0]["params"][0].device == x.device

    def test_lr_scheduler(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.01)
        o2 = torch.optim.SGD([x2], lr=0.01)
        s = torch.optim.lr_scheduler.StepLR(o, 1)
        s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
        for _ in range(5):
            x.backward()
            o.zero_grad()
            o.step()
            s.step()
            x2.backward()
            o2.zero_grad()
            o2.step()
            s2.step()
            assert x == x2

    def test_step_with_kwargs(self):
        class SGDWithStepKWArg(torch.optim.SGD):
            def step(self, closure=None, kwarg=[]):
                super().step()
                kwarg.append(5)

        kwarg = []
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
        x.backward()
        o.step(0, kwarg=kwarg)
        assert kwarg == [5]
        assert x == torch.tensor([0.9], device=DEVICE)

157
158
159
160
161
162
163
164
165
166
167
168
    @skip_if_no_cuda
    def test_device_change(self):
        x = torch.nn.Linear(1, 1).to("cpu")
        o = optim.OSS(x.parameters(), torch.optim.SGD, lr=0.1)

        # Move the model to device after OSS was constructed
        x.to(DEVICE)
        x(torch.zeros((1), device=DEVICE)).backward()

        # Check that OSS detects that the device changed
        o.step()

169
170
171
172
173
174
175
176
177
178
179
180
181
    def test_step_with_extra_inner_key(self):
        class SGDWithNewKey(torch.optim.SGD):
            # Dummy optimizer which adds a new key to the param groups
            def step(self, closure=None):
                super().step()
                self.param_groups[0]["new_key"] = 0.1

        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithNewKey, lr=0.1)
        x.backward()
        o.step()
        assert o.param_groups[0]["new_key"] == 0.1
        assert x == torch.tensor([0.9], device=DEVICE)
182

183
184
185
186
    def test_step_without_closure(self):
        class SGDWithoutClosure(torch.optim.SGD):
            def step(self):
                return super().step()
187

188
189
190
191
192
193
194
195
196
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_implicit_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
197
198
        with pytest.raises(RuntimeError):
            _ = o.state_dict()
199
200


201
202
def run_test_add_param_group(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
203
204
205
206

    # Test with all parameters trainable to begin with
    def all_trainable():
        params = []
207
208
209
        sizes = [9, 7, 5, 3]
        sizes_world = sizes * world_size
        for size in sizes_world[:-1]:
210
211
212
213
214
215
216
217
218
219
220
221
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
222
223
224

        # Verify that added group is added to the correct partition making all have the same number of elements
        assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == sum(sizes)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        assert len(o.optim.param_groups) == 2

    # Test a pathological config with a first big non-trainable param
    def some_trainable():
        params = []
        for size in [100, 3, 5, 2, 6, 4]:
            params.append(torch.rand(size, 1))

        # Make sure that the params are trainable, enforces size-based partitioning
        for p in params[1:]:
            p.requires_grad = True

        o = optim.OSS(params, lr=0.1)

        assert len(o.param_groups) == 1
        o.add_param_group({"params": [torch.rand(3, 1)]})

        assert len(o.param_groups) == 2
        assert len(o.optim.param_groups) == 2

    all_trainable()
    some_trainable()
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
247

248
249
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
250
251

def test_add_param_group():
252
    world_size = 4
253
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
254
255
        world_size = min(world_size, torch.cuda.device_count())

256
    mp.spawn(run_test_add_param_group, args=(world_size, tempfile.mkstemp()[1]), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
257
258


259
260
def run_test_zero_grad(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
261
262
263
264
265
266
267
268
269
270
271
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad

272
273
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
274
275
276

def test_zero_grad():
    world_size = 2
277
278
279
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        world_size = min(world_size, torch.cuda.device_count())

280
281
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_zero_grad, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
282
283


284
285
def run_test_empty_shard(rank, world_size, tempfile_name, backend):
    dist_init(rank, world_size, tempfile_name, backend=backend)
286
    m = torch.nn.Linear(1, 1)
287
288
289
290
291
292
293
294
295
296
    x = torch.rand(20, 1)

    if torch.cuda.is_available():
        m = m.to(rank)
        x = x.to(rank)

    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x).sum()
    y.backward()
    o.step()
297
298
299
300

    dist.destroy_process_group()


301
302
@pytest.mark.parametrize("backend", ["gloo", "nccl"])
def test_empty_shard(backend):
303
    world_size = 4
304
305
306
307
308
    if torch.cuda.is_available() and torch.cuda.device_count() < world_size:
        world_size = min(world_size, torch.cuda.device_count())
    if world_size == 1 or (backend == "nccl" and not torch.cuda.is_available()):
        pytest.skip("Not enough GPUs to test with NCCL, or CUDA not present")
    mp.spawn(run_test_empty_shard, args=(world_size, tempfile.mkstemp()[1], backend), nprocs=world_size, join=True)
309
310


311
312
def run_test_step(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
313
314
315
316
317
318
319
320
321
322
323
324
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
325
326
    assert m.weight == torch.tensor([[0.75]], device=rank), f"{rank}: {m.weight.item()}, 0.75 expected"
    assert m.bias == torch.tensor([1.85], device=rank), f"{rank}: {m.bias.item()}, 1.85 expected"
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
327

328
329
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
330

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
331
@skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
332
def test_step():
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
333
    world_size = 2
334
335
336
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
337
338


339
340
def run_test_step_with_closure(rank, world_size, tempfile_name, optimizer=None):
    dist_init(rank, world_size, tempfile_name)
341

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
342
343
344
345
346
347
348
349
350
351
352
353
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
354

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
355
    o = optim.OSS(m.parameters(), lr=0.1)
356

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)

376
377
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
378
379
380

@skip_if_no_cuda
def test_step_with_closure():
381
    world_size = min(2, torch.cuda.device_count())
382
383
384
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step_with_closure, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
385
386


387
388
def run_test_sharding(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
389
    params = []
390
391
392
393
    sizes = [9, 7, 5, 3]
    sizes_world = sizes * world_size

    for size in sizes_world:
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
394
        params.append(torch.rand(size, 1))
395
396
397
398
399

    # Make sure that the params are trainable, enforces size-based partitioning
    for p in params:
        p.requires_grad = True

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
400
    o = optim.OSS(params, lr=0.1)
401
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == sum(sizes)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
402

403
404
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
405
406

def test_sharding():
407
408
409
    world_size = 4
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
410

411
    _, temp_file_name = tempfile.mkstemp()
412
    mp.spawn(run_test_sharding, args=(world_size, temp_file_name), nprocs=world_size, join=True)
413
414


415
416
def run_test_collect_shards(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
417
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE
418
    torch.cuda.set_device(rank)
419
420

    # Run a dummy step so that the optimizer state dict exists
421
    batch, input_width, hidden, target_width = 3, 3, 3, 5
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
451
        assert len(optimizer_state_dict["state"]) == len(list(model.parameters()))
452
453
454
    else:
        optimizer_state_dict = {}

455
456
    # distribute to the other ranks
    optimizer_state_dict = sync_object_ranks(optimizer_state_dict, reference_rank, device)
457
458

    # Load the optimizer state dict
459
    optimizer.load_state_dict(optimizer_state_dict)
460
461
462
463
464

    # Check that the states are not None, but {}
    for state in optimizer.state.values():
        for _, _ in state.items():
            pass
465
466
467
468
469
470
471
472

    # Test the state dict materialization on all ranks
    _ = optimizer.step(closure=closure)
    optimizer_state_dict = optimizer.state_dict(all_ranks=True)  # one per rank
    optimizer.load_state_dict(optimizer_state_dict)
    _ = optimizer.step(closure=closure)
    check_same_models_across_ranks(model, dist.group.WORLD, params_should_be_equal=True, check_broadcast_buffers=False)

473
474
475
476
477
    # Check that if the model is moved to cpu, the optimizer consolidation still works
    model.cpu()
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

478
    dist.destroy_process_group()
479
480


481
@skip_if_single_gpu
482
def test_collect_shards():
483
    world_size = 2
484
    temp_file_name = tempfile.mkstemp()[1]
485
486
487
    reference_rank = 0

    mp.spawn(
488
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
489
    )
490
491


492
def run_test_reproducibility(rank, world_size, tempfile_name, broadcast_fp16):
493
494
    dist_init(rank, world_size, tempfile_name)
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE
495
    torch.cuda.set_device(rank)
496
497
498
499
500
501
502
503

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 3, 3, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)
504
    model = DDP(model, device_ids=[device])
505
506
507
508

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

509
    optimizer = optim.OSS(model.parameters(), optim=torch.optim.RMSprop, lr=0.1, broadcast_fp16=broadcast_fp16)
510
511
512
513
514
515
516
517
518
519

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

520
521
522
    # Get a snapshot of the state at this point
    optimizer_state_dict = copy.deepcopy(optimizer.state_dict(all_ranks=True))
    model_state_dict = copy.deepcopy(model.state_dict())
523
524
525
526
527
528
529

    # Run two steps, log the loss
    _ = optimizer.step(closure=closure)
    reference_loss = optimizer.step(closure=closure)

    # Load the optimizer state dict, rewind the state two steps back
    optimizer.load_state_dict(optimizer_state_dict)
530
    model.load_state_dict(model_state_dict)
531
532
533
534
535

    # Run two new steps, log the loss again and check that we get the same
    _ = optimizer.step(closure=closure)
    test_loss = optimizer.step(closure=closure)

536
    assert torch.allclose(reference_loss, test_loss), f"{reference_loss} vs {test_loss}. Reproducibility is broken"
537
538
539
540

    dist.destroy_process_group()


541
@skip_if_single_gpu
542
543
@pytest.mark.parametrize("broadcast_fp16", [False, True])
def test_reproducibility(broadcast_fp16: bool):
544
545
546
547
    world_size = 2
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(
548
        run_test_reproducibility, args=(world_size, temp_file_name, broadcast_fp16), nprocs=world_size, join=True,
549
550
551
    )


552
def run_test_multiple_groups(rank, world_size, tempfile_name):
553
    # Only work with the even ranks, to check that the global_rank indexing is properly used
554
    dist_init(rank=rank, world_size=world_size, tempfile_name=tempfile_name, backend="gloo")
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
593
594
595
596
597
                            assert torch.all(
                                torch.eq(receptacle[0], sync_p)
                            ), "Models differ in between ranks {} - {}".format(
                                torch.norm(receptacle[0]), torch.norm(sync_p)
                            )
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)

620
621
    dist.destroy_process_group(process_group)

622

623
@skip_if_py39_no_cuda
624
625
def test_multiple_groups():
    world_size = 6
626
    temp_file_name = tempfile.mkstemp()[1]
627
628

    mp.spawn(
629
        run_test_multiple_groups, args=(world_size, temp_file_name), nprocs=world_size, join=True,
630
    )
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675


def run_gradient_clipping(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)
    NORMS = [1.0, 2.0, 1, 2, inf]
    CLIP_NORM = 0.3

    def check(norm):
        model_oss = torch.nn.Sequential(
            torch.nn.Linear(input_width, hidden),
            torch.nn.Linear(hidden, hidden),
            torch.nn.Linear(hidden, target_width),
        ).to(device)
        model = copy.deepcopy(model_oss)

        # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
        # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
        # gradient norm computation from OSS and adds a dependency.
        # to keep the comparison apples-to-apples DDP is used in both cases
        model_oss = DDP(module=model_oss, device_ids=[rank],)
        sharded_optimizer = optim.OSS(model_oss.parameters(), lr=0.1, momentum=0.99)

        model = DDP(model, device_ids=[rank],)

        loss_fn = torch.nn.L1Loss()
        loss_fn.to(device)

        model.zero_grad()
        model_oss.zero_grad()

        outputs = model(inputs)
        outputs_oss = model_oss(inputs)

        loss = loss_fn(outputs, target)
        loss.backward()

        loss_oss = loss_fn(outputs_oss, target)
        loss_oss.backward()
676
        torch.testing.assert_allclose(loss_oss, loss)
677
678
679
680
681
682
683

        # Check the equivalence with the non-sharded optim
        oss_total_norm = sharded_optimizer.clip_grad_norm(CLIP_NORM, norm_type=norm)
        total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_NORM, norm_type=norm)
        assert torch.allclose(oss_total_norm, total_norm), "torch and fairscale should return the same grad norm"

        # Check that the params have indeed been clipped
684
        for params in sharded_optimizer._per_device_params.values():
685
686
687
688
689
690
691
            for param in filter(lambda x: x.grad is not None, params[rank]):
                assert torch.norm(param.grad, p=norm) < CLIP_NORM, f"param grad norm above clip : {param.grad}"

    for norm in NORMS:
        print(f"Checking norm {norm}")
        check(norm)

Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
692
693
694
        # Check twice, catch an hypothetic iterator dumb mistake
        check(norm)

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    dist.destroy_process_group()


@skip_if_no_cuda
def test_gradient_clipping():
    world_size = 3
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
    reference_rank = 0

    mp.spawn(
        run_gradient_clipping, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
710
711
712
713


def run_state_dict_distributed(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
714

715
716
717
    device = torch.device(rank)
    torch.manual_seed(rank)  # make sure that the different rank get different data

718
719
    # Setup two problems in parallel, we'll make sure that the second track (with save/load) follows the first one(untouched)
    # We split the model in two to test the multiple param groups support
720
721
722
723
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

724
    model_oss1 = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, hidden)).to(device)
725
726
    head_oss1 = torch.nn.Linear(hidden, target_width).to(device)

727
    model_oss2 = copy.deepcopy(model_oss1)
728
    head_oss2 = copy.deepcopy(head_oss1)
729
730
731
732
733
734
735

    # For this test the gradients are (all) reduced in the same way in between the torch reference and fairscale.
    # Normally OSS would use ShardedDDP and only reduce to the proper rank, but this does not change the
    # gradient norm computation from OSS and adds a dependency.
    # to keep the comparison apples-to-apples DDP is used in both cases
    model_oss1 = DDP(module=model_oss1, device_ids=[rank],)
    sharded_optimizer1 = optim.OSS(model_oss1.parameters(), lr=0.1, momentum=0.99)
736
737
    sharded_optimizer1.add_param_group({"params": head_oss1.parameters()})

738
739
    model_oss2 = DDP(module=model_oss2, device_ids=[rank],)
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
740
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
741

742
    loss_fn = torch.nn.L1Loss().to(device)
743

744
    def run_grad_step(model, head, optimizer):
745
        model.zero_grad()
746
        outputs = head(model(inputs))
747

748
749
750
751
    # pull the current state, broadcast it to all ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
752

753
754
    # re-create a new optimizer from scratch with absurd values, load the previous state
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=1e6, momentum=0.0001)
755
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
756
    sharded_optimizer2.load_state_dict(state_dict2)
757
758
759
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (before any steps)"
    )
760
761

    # now take a step and check that parameters are equal
762
763
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
764
765
766
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after stepping)"
    )
767

768
769
770
771
    # save the state dict for one model only, then distribute to the other ranks
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
772
773
774
775
776
777
778
779

    # Check that the pulled state and the .param_groups attribute are in sync
    for replica in range(len(state_dict2["param_groups"])):
        for k in state_dict2["param_groups"][replica].keys():
            if k != "params":
                assert state_dict2["param_groups"][replica][k] == sharded_optimizer2.param_groups[0][k]

    # take a step
780
781
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
782
783
784
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after consolidating)"
    )
785

786
787
788
789
    # save again for one rank, then distribute to the others
    sharded_optimizer2.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)  # all ranks
    state_dict2 = sharded_optimizer2.state_dict() if rank == RECIPIENT_RANK else {}
    state_dict2 = sync_object_ranks(state_dict2, RECIPIENT_RANK, device)
790
791
792

    # reload the state_dict
    sharded_optimizer2 = optim.OSS(model_oss2.parameters(), lr=0.1, momentum=0.99)
793
    sharded_optimizer2.add_param_group({"params": head_oss2.parameters()})
794
795
796
    sharded_optimizer2.load_state_dict(state_dict2)

    # take a step
797
798
    run_grad_step(model_oss1, head_oss1, sharded_optimizer1)
    run_grad_step(model_oss2, head_oss2, sharded_optimizer2)
799
800
801
    check_same_model_params(
        model_oss1, model_oss2, "parameters of the two identical models have diverged (after reloading)"
    )
802
803
804
805
806
807

    dist.destroy_process_group()


@skip_if_no_cuda
def test_state_dict_distributed():
808
    world_size = 2
809
810
811
    temp_file_name = tempfile.mkstemp()[1]

    if torch.cuda.is_available():
812
        world_size = max(world_size, torch.cuda.device_count())
813
814
815
816

    mp.spawn(
        run_state_dict_distributed, args=(world_size, temp_file_name), nprocs=world_size, join=True,
    )
817
818


819
def run_ddp_parity(rank, world_size, backend, temp_file_name, change_train_graph, broadcast_fp16):
820
821
822
823
824
825
826
    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)

    device = torch.device("cuda")
    torch.cuda.set_device(rank)
    torch.manual_seed(rank)
    np.random.seed(rank)
827
828
829
830
    hidden = 5
    in_channels = 3
    out_channels = 3
    batch = 64
831

832
    def check_optimizer_equivalence(optimizer: Type[torch.optim.Optimizer], change_train_graph: bool = False):
833
        # Any model works. Add one different buffer per rank
834
835
836
        trunk = torch.nn.Sequential(
            torch.nn.Linear(in_channels, hidden), torch.nn.Linear(hidden, hidden), torch.nn.Linear(hidden, hidden)
        )
837
838
839
840
841
842
        trunk.register_buffer("test_buffer", torch.ones((1)) * rank)
        trunk.to(device)

        head = torch.nn.Linear(hidden, out_channels).to(device)

        # Define a model to be trained by OSS
843
        oss_module = torch.nn.Sequential(trunk, head)
844
845

        # Make sure that the param groups are interleaved, to catch an ordering bug in the state dict
846
        oss_trainable_params = [
847
848
            {"params": list(trunk.parameters())[:-1] + list(head.parameters()), "lr": 1e-5},
            {"params": list(trunk.parameters())[-1], "lr": 1e-4},
849
850
        ]

851
852
        optimizer_settings: Dict[Any, Any] = {}
        if isinstance(optimizer, torch.optim.SGD):
853
854
855
856
857
858
859
860
861
862
            optimizer_settings["momentum"] = 0.9

        sharded_optimizer = optim.OSS(
            params=oss_trainable_params,
            optim=optimizer,
            group=None,
            broadcast_buffer_size=2 ** 10,
            **optimizer_settings,
        )

863
        oss_ddp_model = DDP(module=oss_module, device_ids=[rank], broadcast_buffers=True, find_unused_parameters=True)
864

865
866
867
868
        # Define a model to be trained by normal pytorch + DDP
        ddp_trunk = copy.deepcopy(trunk)
        ddp_head = copy.deepcopy(head)
        ddp_module = torch.nn.Sequential(ddp_trunk, ddp_head)
869

870
        ddp_trainable_params = [
871
872
            {"params": list(ddp_trunk.parameters())[:-1] + list(ddp_head.parameters()), "lr": 1e-5},
            {"params": list(ddp_trunk.parameters())[-1], "lr": 1e-4},
873
874
        ]
        ddp_optimizer = optimizer(ddp_trainable_params, **optimizer_settings)  # type: ignore
875
        ddp_model = DDP(module=ddp_module, device_ids=[rank], broadcast_buffers=True, find_unused_parameters=True)
876

877
878
        def check_step():
            input_tensor = torch.rand((batch, in_channels)).to(device)
879
880
881
882
883
884
885
886
887

            def closure_ddp(input_tensor=input_tensor):
                ddp_optimizer.zero_grad()
                ddp_loss = ddp_model(input_tensor).abs().sum()
                ddp_loss.backward()
                return ddp_loss

            def closure_sharded(input_tensor=input_tensor):
                sharded_optimizer.zero_grad()
888
                sharded_loss = oss_ddp_model(input_tensor).abs().sum()
889
890
891
892
893
894
895
                sharded_loss.backward()
                return sharded_loss

            loss_ddp = cast(torch.Tensor, ddp_optimizer.step(closure=closure_ddp))
            loss_sharded_optim = cast(torch.Tensor, sharded_optimizer.step(closure=closure_sharded))

            assert torch.allclose(
896
897
                loss_ddp, loss_sharded_optim, rtol=1e-3
            ), f"Losses differ in between Pytorch optim and OSS\n {loss_ddp.item()} - {loss_sharded_optim.item()} - world size {world_size}"
898

899
900
            check_same_model_params(oss_ddp_model, ddp_model)

901
        # The model should be synchronized in between the ranks at construction time, check that
902
        check_same_model_params(oss_ddp_model, ddp_model)
903
904
905
906

        # The models should stay the same in between ddp and sharded optimizer
        for i in range(5):
            check_step()
907
908
909
910
911
912
913

            # Check that altering the trainable parameters does not cause DDP and OSS to diverge
            if change_train_graph:
                # Flip the first parameter from trainable to non-trainable and vice-versa
                next(ddp_module.parameters()).requires_grad = not next(ddp_module.parameters()).requires_grad
                next(oss_module.parameters()).requires_grad = not next(oss_module.parameters()).requires_grad
                # sharded_optimizer.refresh_trainable()
914

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
        # Check that the checkpoints are compatible (post pytorch 1.5)
        if torch_version()[1] > 5:
            # - get states
            ddp_state_dict = ddp_optimizer.state_dict()
            sharded_optimizer.consolidate_state_dict(recipient_rank=RECIPIENT_RANK)
            sharded_optim_state_dict = sharded_optimizer.state_dict() if rank == RECIPIENT_RANK else {}
            sharded_optim_state_dict = sync_object_ranks(sharded_optim_state_dict, RECIPIENT_RANK, device)

            # - cross load the states
            # run one step and check that the models are still the same
            ddp_state_dict_ref = copy.deepcopy(ddp_state_dict)  # OSS will remove some states
            ddp_optimizer.load_state_dict(sharded_optim_state_dict)  # mixup on purpose !
            sharded_optimizer.load_state_dict(ddp_state_dict)
            check_step()

            #  - self load, rewind, check no problem
            # run one step and check that the models are still the same
            ddp_optimizer.load_state_dict(ddp_state_dict_ref)
            sharded_optimizer.load_state_dict(sharded_optim_state_dict)
            check_step()
935

936
    for opt in [torch.optim.Adam, torch.optim.SGD]:
937
        check_optimizer_equivalence(opt, change_train_graph=change_train_graph)
938
939
940
941
942
943

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
944
945
@pytest.mark.parametrize("change_train_graph", [True, False])
@pytest.mark.parametrize("backend", [dist.Backend.NCCL, dist.Backend.GLOO])
946
947
@pytest.mark.parametrize("broadcast_fp16", [False, True])
def test_ddp_parity(change_train_graph: bool, backend: dist.Backend, broadcast_fp16: bool):
948
949
    temp_file_name = tempfile.mkstemp()[1]
    world_size = torch.cuda.device_count()
950
    mp.spawn(
951
952
953
954
        run_ddp_parity,
        args=(world_size, backend, temp_file_name, change_train_graph, broadcast_fp16),
        nprocs=world_size,
        join=True,
955
    )