face_recognition.cpp 12.4 KB
Newer Older
1
2
3
// Copyright (C) 2017  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

Davis King's avatar
Davis King committed
4
#include "opaque_types.h"
5
6
7
8
9
10
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry/vector.h>
#include <dlib/dnn.h>
#include <dlib/image_transforms.h>
#include "indexing.h"
11
12
#include <dlib/image_io.h>
#include <dlib/clustering.h>
13
#include <pybind11/stl_bind.h>
14
#include <pybind11/stl.h>
15
16
17
18
19


using namespace dlib;
using namespace std;

20
21
namespace py = pybind11;

22

23
typedef matrix<double,0,1> cv;
24
25
26
27
28
29
30
31
32
33
34
35

class face_recognition_model_v1
{

public:

    face_recognition_model_v1(const std::string& model_filename)
    {
        deserialize(model_filename) >> net;
    }

    matrix<double,0,1> compute_face_descriptor (
36
        numpy_image<rgb_pixel> img,
37
        const full_object_detection& face,
38
39
        const int num_jitters,
        float padding = 0.25
40
41
42
    )
    {
        std::vector<full_object_detection> faces(1, face);
43
        return compute_face_descriptors(img, faces, num_jitters, padding)[0];
44
45
46
    }

    std::vector<matrix<double,0,1>> compute_face_descriptors (
47
        numpy_image<rgb_pixel> img,
48
        const std::vector<full_object_detection>& faces,
49
50
        const int num_jitters,
        float padding = 0.25
51
52
    )
    {
53
54
        std::vector<numpy_image<rgb_pixel>> batch_img(1, img);
        std::vector<std::vector<full_object_detection>> batch_faces(1, faces);
55
        return batch_compute_face_descriptors(batch_img, batch_faces, num_jitters, padding)[0];
56
57
58
59
60
    }

    std::vector<std::vector<matrix<double,0,1>>> batch_compute_face_descriptors (
        const std::vector<numpy_image<rgb_pixel>>& batch_imgs,
        const std::vector<std::vector<full_object_detection>>& batch_faces,
61
62
        const int num_jitters,
        float padding = 0.25
63
64
65
66
67
    )
    {

        if (batch_imgs.size() != batch_faces.size())
            throw dlib::error("The array of images and the array of array of locations must be of the same size");
68

69
        int total_chips = 0;
70
        for (const auto& faces : batch_faces)
71
        {
72
            total_chips += faces.size();
73
            for (const auto& f : faces)
74
75
76
77
            {
                if (f.num_parts() != 68 && f.num_parts() != 5)
                    throw dlib::error("The full_object_detection must use the iBUG 300W 68 point face landmark style or dlib's 5 point style.");
            }
78
79
80
81
        }


        dlib::array<matrix<rgb_pixel>> face_chips;
82
83
84
85
86
87
        for (int i = 0; i < batch_imgs.size(); ++i)
        {
            auto& faces = batch_faces[i];
            auto& img = batch_imgs[i];

            std::vector<chip_details> dets;
88
            for (const auto& f : faces)
89
                dets.push_back(get_face_chip_details(f, 150, padding));
90
91
            dlib::array<matrix<rgb_pixel>> this_img_face_chips;
            extract_image_chips(img, dets, this_img_face_chips);
92

93
94
95
            for (auto& chip : this_img_face_chips)
                face_chips.push_back(chip);
        }
96

97
        std::vector<std::vector<matrix<double,0,1>>> face_descriptors(batch_imgs.size());
98
99
100
        if (num_jitters <= 1)
        {
            // extract descriptors and convert from float vectors to double vectors
101
102
103
104
105
106
107
108
109
110
            auto descriptors = net(face_chips, 16);
            auto next = std::begin(descriptors);
            for (int i = 0; i < batch_faces.size(); ++i)
            {
                for (int j = 0; j < batch_faces[i].size(); ++j)
                {
                    face_descriptors[i].push_back(matrix_cast<double>(*next++));
                }
            }
            DLIB_ASSERT(next == std::end(descriptors));
111
112
113
        }
        else
        {
114
115
116
117
118
119
            // extract descriptors and convert from float vectors to double vectors
            auto fimg = std::begin(face_chips);
            for (int i = 0; i < batch_faces.size(); ++i)
            {
                for (int j = 0; j < batch_faces[i].size(); ++j)
                {
Davis King's avatar
cleanup  
Davis King committed
120
                    auto& r = mean(mat(net(jitter_image(*fimg++, num_jitters), 16)));
121
122
123
124
                    face_descriptors[i].push_back(matrix_cast<double>(r));
                }
            }
            DLIB_ASSERT(fimg == std::end(face_chips));
125
126
127
128
129
130
131
        }

        return face_descriptors;
    }

private:

132
    dlib::rand rnd;
133
134
135
136
137
138
139
140

    std::vector<matrix<rgb_pixel>> jitter_image(
        const matrix<rgb_pixel>& img,
        const int num_jitters
    )
    {
        std::vector<matrix<rgb_pixel>> crops; 
        for (int i = 0; i < num_jitters; ++i)
141
            crops.push_back(dlib::jitter_image(img,rnd));
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        return crops;
    }


    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;

    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;

    template <int N, template <typename> class BN, int stride, typename SUBNET> 
    using block  = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;

    template <int N, typename SUBNET> using ares      = relu<residual<block,N,affine,SUBNET>>;
    template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;

    template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
    template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
    template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
    template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
    template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;

    using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<
                                alevel0<
                                alevel1<
                                alevel2<
                                alevel3<
                                alevel4<
                                max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,
                                input_rgb_image_sized<150>
                                >>>>>>>>>>>>;
    anet_type net;
};

Davis King's avatar
Davis King committed
176
177
// ----------------------------------------------------------------------------------------

178
py::list chinese_whispers_clustering(py::list descriptors, float threshold)
Davis King's avatar
Davis King committed
179
{
Davis King's avatar
Davis King committed
180
    DLIB_CASSERT(threshold > 0);
181
    py::list clusters;
Davis King's avatar
Davis King committed
182

183
    size_t num_descriptors = py::len(descriptors);
Davis King's avatar
Davis King committed
184
185
186
187
188
189
190
191

    // This next bit of code creates a graph of connected objects and then uses the Chinese
    // whispers graph clustering algorithm to identify how many objects there are and which
    // objects belong to which cluster.
    std::vector<sample_pair> edges;
    std::vector<unsigned long> labels;
    for (size_t i = 0; i < num_descriptors; ++i)
    {
192
        for (size_t j = i; j < num_descriptors; ++j)
Davis King's avatar
Davis King committed
193
        {
194
195
            matrix<double,0,1>& first_descriptor = descriptors[i].cast<matrix<double,0,1>&>();
            matrix<double,0,1>& second_descriptor = descriptors[j].cast<matrix<double,0,1>&>();
Davis King's avatar
Davis King committed
196
197
198
199
200

            if (length(first_descriptor-second_descriptor) < threshold)
                edges.push_back(sample_pair(i,j));
        }
    }
Hung-Wei Chiu's avatar
Hung-Wei Chiu committed
201
    chinese_whispers(edges, labels);
Davis King's avatar
Davis King committed
202
203
204
205
206
207
208
209
    for (size_t i = 0; i < labels.size(); ++i)
    {
        clusters.append(labels[i]);
    }
    return clusters;
}

void save_face_chips (
210
    numpy_image<rgb_pixel> img,
Davis King's avatar
Davis King committed
211
    const std::vector<full_object_detection>& faces,
212
213
214
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
215
216
)
{
217

Davis King's avatar
Davis King committed
218
219
    int num_faces = faces.size();
    std::vector<chip_details> dets;
220
    for (const auto& f : faces)
221
        dets.push_back(get_face_chip_details(f, size, padding));
Davis King's avatar
Davis King committed
222
    dlib::array<matrix<rgb_pixel>> face_chips;
223
    extract_image_chips(numpy_image<rgb_pixel>(img), dets, face_chips);
Davis King's avatar
Davis King committed
224
    int i=0;
225
    for (const auto& chip : face_chips) 
Davis King's avatar
Davis King committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    {
        i++;
        if(num_faces > 1) 
        {
            const std::string& file_name = chip_filename + "_" + std::to_string(i) + ".jpg";
            save_jpeg(chip, file_name);
        }
        else
        {
            const std::string& file_name = chip_filename + ".jpg";
            save_jpeg(chip, file_name);
        }
    }
}

void save_face_chip (
242
    numpy_image<rgb_pixel> img,
Davis King's avatar
Davis King committed
243
    const full_object_detection& face,
244
245
246
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
247
248
249
)
{
    std::vector<full_object_detection> faces(1, face);
250
    save_face_chips(img, faces, chip_filename, size, padding);
Davis King's avatar
Davis King committed
251
252
}

253
void bind_face_recognition(py::module &m)
254
{
255
256
257
258
259
260
261
262
263
    {
    typedef std::vector<full_object_detection> type;
    py::bind_vector<type>(m, "full_object_detections", "An array of full_object_detection objects.")
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def("extend", extend_vector_with_python_list<full_object_detection>)
        .def(py::pickle(&getstate<type>, &setstate<type>));
    }

264
    {
265
266
    py::class_<face_recognition_model_v1>(m, "face_recognition_model_v1", "This object maps human faces into 128D vectors where pictures of the same person are mapped near to each other and pictures of different people are mapped far apart.  The constructor loads the face recognition model from a file. The model file is available here: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2")
        .def(py::init<std::string>())
267
268
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor,
            py::arg("img"), py::arg("face"), py::arg("num_jitters")=0, py::arg("padding")=0.25,
269
            "Takes an image and a full_object_detection that references a face in that image and converts it into a 128D face descriptor. "
270
271
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor. "
            "Optionally allows to override default padding of 0.25 around the face."
272
            )
273
274
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptors,
            py::arg("img"), py::arg("faces"), py::arg("num_jitters")=0, py::arg("padding")=0.25,
275
            "Takes an image and an array of full_object_detections that reference faces in that image and converts them into 128D face descriptors.  "
276
277
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor. "
            "Optionally allows to override default padding of 0.25 around the face."
278
            )
279
280
        .def("compute_face_descriptor", &face_recognition_model_v1::batch_compute_face_descriptors,
            py::arg("batch_img"), py::arg("batch_faces"), py::arg("num_jitters")=0, py::arg("padding")=0.25,
281
282
            "Takes an array of images and an array of arrays of full_object_detections. `batch_faces[i]` must be an array of full_object_detections corresponding to the image `batch_img[i]`, "
            "referencing faces in that image. Every face will be converting into 128D face descriptors.  "
283
284
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor. "
            "Optionally allows to override default padding of 0.25 around the face."
285
286
287
            );
    }

288
    m.def("save_face_chip", &save_face_chip, 
289
	"Takes an image and a full_object_detection that references a face in that image and saves the face with the specified file name prefix.  The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.", 
290
291
292
	py::arg("img"), py::arg("face"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
    );
    m.def("save_face_chips", &save_face_chips, 
293
	"Takes an image and a full_object_detections object that reference faces in that image and saves the faces with the specified file name prefix.  The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
294
295
296
          py::arg("img"), py::arg("faces"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
    );
    m.def("chinese_whispers_clustering", &chinese_whispers_clustering, py::arg("descriptors"), py::arg("threshold"),
Davis King's avatar
Davis King committed
297
298
        "Takes a list of descriptors and returns a list that contains a label for each descriptor. Clustering is done using dlib::chinese_whispers."
        );
299
300
}