face_recognition.cpp 11.9 KB
Newer Older
1
2
3
// Copyright (C) 2017  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

Davis King's avatar
Davis King committed
4
#include "opaque_types.h"
5
6
7
8
9
10
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry/vector.h>
#include <dlib/dnn.h>
#include <dlib/image_transforms.h>
#include "indexing.h"
11
12
#include <dlib/image_io.h>
#include <dlib/clustering.h>
13
#include <pybind11/stl_bind.h>
14
#include <pybind11/stl.h>
15
16
17
18
19


using namespace dlib;
using namespace std;

20
21
namespace py = pybind11;

22

23
typedef matrix<double,0,1> cv;
24
25
26
27
28
29
30
31
32
33
34
35

class face_recognition_model_v1
{

public:

    face_recognition_model_v1(const std::string& model_filename)
    {
        deserialize(model_filename) >> net;
    }

    matrix<double,0,1> compute_face_descriptor (
36
        numpy_image<rgb_pixel> img,
37
38
39
40
41
42
43
44
45
        const full_object_detection& face,
        const int num_jitters
    )
    {
        std::vector<full_object_detection> faces(1, face);
        return compute_face_descriptors(img, faces, num_jitters)[0];
    }

    std::vector<matrix<double,0,1>> compute_face_descriptors (
46
        numpy_image<rgb_pixel> img,
47
48
49
50
        const std::vector<full_object_detection>& faces,
        const int num_jitters
    )
    {
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        std::vector<numpy_image<rgb_pixel>> batch_img(1, img);
        std::vector<std::vector<full_object_detection>> batch_faces(1, faces);
        return batch_compute_face_descriptors(batch_img, batch_faces, num_jitters)[0];
    }

    std::vector<std::vector<matrix<double,0,1>>> batch_compute_face_descriptors (
        const std::vector<numpy_image<rgb_pixel>>& batch_imgs,
        const std::vector<std::vector<full_object_detection>>& batch_faces,
        const int num_jitters
    )
    {

        if (batch_imgs.size() != batch_faces.size())
            throw dlib::error("The array of images and the array of array of locations must be of the same size");
65

66
67
        int total_chips = 0;
        for (auto& faces : batch_faces)
68
        {
69
70
71
72
73
74
            total_chips += faces.size();
            for (auto& f : faces)
            {
                if (f.num_parts() != 68 && f.num_parts() != 5)
                    throw dlib::error("The full_object_detection must use the iBUG 300W 68 point face landmark style or dlib's 5 point style.");
            }
75
76
77
78
        }


        dlib::array<matrix<rgb_pixel>> face_chips;
79
80
81
82
83
84
85
86
87
88
        for (int i = 0; i < batch_imgs.size(); ++i)
        {
            auto& faces = batch_faces[i];
            auto& img = batch_imgs[i];

            std::vector<chip_details> dets;
            for (auto& f : faces)
                dets.push_back(get_face_chip_details(f, 150, 0.25));
            dlib::array<matrix<rgb_pixel>> this_img_face_chips;
            extract_image_chips(img, dets, this_img_face_chips);
89

90
91
92
            for (auto& chip : this_img_face_chips)
                face_chips.push_back(chip);
        }
93

94
        std::vector<std::vector<matrix<double,0,1>>> face_descriptors(batch_imgs.size());
95
96
97
        if (num_jitters <= 1)
        {
            // extract descriptors and convert from float vectors to double vectors
98
99
100
101
102
103
104
105
106
107
            auto descriptors = net(face_chips, 16);
            auto next = std::begin(descriptors);
            for (int i = 0; i < batch_faces.size(); ++i)
            {
                for (int j = 0; j < batch_faces[i].size(); ++j)
                {
                    face_descriptors[i].push_back(matrix_cast<double>(*next++));
                }
            }
            DLIB_ASSERT(next == std::end(descriptors));
108
109
110
        }
        else
        {
111
112
113
114
115
116
117
118
119
120
121
122
            // extract descriptors and convert from float vectors to double vectors
            auto fimg = std::begin(face_chips);
            for (int i = 0; i < batch_faces.size(); ++i)
            {
                for (int j = 0; j < batch_faces[i].size(); ++j)
                {
                    auto& r = matrix_cast<double>(mean(mat(net(
                                    jitter_image(*fimg++, num_jitters), 16))));
                    face_descriptors[i].push_back(matrix_cast<double>(r));
                }
            }
            DLIB_ASSERT(fimg == std::end(face_chips));
123
124
125
126
127
128
129
        }

        return face_descriptors;
    }

private:

130
    dlib::rand rnd;
131
132
133
134
135
136
137
138

    std::vector<matrix<rgb_pixel>> jitter_image(
        const matrix<rgb_pixel>& img,
        const int num_jitters
    )
    {
        std::vector<matrix<rgb_pixel>> crops; 
        for (int i = 0; i < num_jitters; ++i)
139
            crops.push_back(dlib::jitter_image(img,rnd));
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        return crops;
    }


    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;

    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;

    template <int N, template <typename> class BN, int stride, typename SUBNET> 
    using block  = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;

    template <int N, typename SUBNET> using ares      = relu<residual<block,N,affine,SUBNET>>;
    template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;

    template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
    template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
    template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
    template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
    template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;

    using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<
                                alevel0<
                                alevel1<
                                alevel2<
                                alevel3<
                                alevel4<
                                max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,
                                input_rgb_image_sized<150>
                                >>>>>>>>>>>>;
    anet_type net;
};

Davis King's avatar
Davis King committed
174
175
// ----------------------------------------------------------------------------------------

176
py::list chinese_whispers_clustering(py::list descriptors, float threshold)
Davis King's avatar
Davis King committed
177
{
Davis King's avatar
Davis King committed
178
    DLIB_CASSERT(threshold > 0);
179
    py::list clusters;
Davis King's avatar
Davis King committed
180

181
    size_t num_descriptors = py::len(descriptors);
Davis King's avatar
Davis King committed
182
183
184
185
186
187
188
189

    // This next bit of code creates a graph of connected objects and then uses the Chinese
    // whispers graph clustering algorithm to identify how many objects there are and which
    // objects belong to which cluster.
    std::vector<sample_pair> edges;
    std::vector<unsigned long> labels;
    for (size_t i = 0; i < num_descriptors; ++i)
    {
190
        for (size_t j = i; j < num_descriptors; ++j)
Davis King's avatar
Davis King committed
191
        {
192
193
            matrix<double,0,1>& first_descriptor = descriptors[i].cast<matrix<double,0,1>&>();
            matrix<double,0,1>& second_descriptor = descriptors[j].cast<matrix<double,0,1>&>();
Davis King's avatar
Davis King committed
194
195
196
197
198

            if (length(first_descriptor-second_descriptor) < threshold)
                edges.push_back(sample_pair(i,j));
        }
    }
Hung-Wei Chiu's avatar
Hung-Wei Chiu committed
199
    chinese_whispers(edges, labels);
Davis King's avatar
Davis King committed
200
201
202
203
204
205
206
207
    for (size_t i = 0; i < labels.size(); ++i)
    {
        clusters.append(labels[i]);
    }
    return clusters;
}

void save_face_chips (
208
    numpy_image<rgb_pixel> img,
Davis King's avatar
Davis King committed
209
    const std::vector<full_object_detection>& faces,
210
211
212
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
213
214
)
{
215

Davis King's avatar
Davis King committed
216
217
218
    int num_faces = faces.size();
    std::vector<chip_details> dets;
    for (auto& f : faces)
219
        dets.push_back(get_face_chip_details(f, size, padding));
Davis King's avatar
Davis King committed
220
    dlib::array<matrix<rgb_pixel>> face_chips;
221
    extract_image_chips(numpy_image<rgb_pixel>(img), dets, face_chips);
Davis King's avatar
Davis King committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    int i=0;
    for (auto& chip : face_chips) 
    {
        i++;
        if(num_faces > 1) 
        {
            const std::string& file_name = chip_filename + "_" + std::to_string(i) + ".jpg";
            save_jpeg(chip, file_name);
        }
        else
        {
            const std::string& file_name = chip_filename + ".jpg";
            save_jpeg(chip, file_name);
        }
    }
}

void save_face_chip (
240
    numpy_image<rgb_pixel> img,
Davis King's avatar
Davis King committed
241
    const full_object_detection& face,
242
243
244
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
245
246
247
)
{
    std::vector<full_object_detection> faces(1, face);
248
    save_face_chips(img, faces, chip_filename, size, padding);
Davis King's avatar
Davis King committed
249
250
}

251
void bind_face_recognition(py::module &m)
252
253
{
    {
254
255
256
    py::class_<face_recognition_model_v1>(m, "face_recognition_model_v1", "This object maps human faces into 128D vectors where pictures of the same person are mapped near to each other and pictures of different people are mapped far apart.  The constructor loads the face recognition model from a file. The model file is available here: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2")
        .def(py::init<std::string>())
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor, py::arg("img"),py::arg("face"),py::arg("num_jitters")=0,
257
258
259
            "Takes an image and a full_object_detection that references a face in that image and converts it into a 128D face descriptor. "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
            )
260
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptors, py::arg("img"),py::arg("faces"),py::arg("num_jitters")=0,
261
262
            "Takes an image and an array of full_object_detections that reference faces in that image and converts them into 128D face descriptors.  "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
263
264
265
266
267
            )
        .def("compute_face_descriptor", &face_recognition_model_v1::batch_compute_face_descriptors, py::arg("batch_img"),py::arg("batch_faces"),py::arg("num_jitters")=0,
            "Takes an array of images and an array of arrays of full_object_detections. `batch_faces[i]` must be an array of full_object_detections corresponding to the image `batch_img[i]`, "
            "referencing faces in that image. Every face will be converting into 128D face descriptors.  "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
268
269
270
            );
    }

271
    m.def("save_face_chip", &save_face_chip, 
272
	"Takes an image and a full_object_detection that references a face in that image and saves the face with the specified file name prefix.  The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.", 
273
274
275
	py::arg("img"), py::arg("face"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
    );
    m.def("save_face_chips", &save_face_chips, 
276
	"Takes an image and a full_object_detections object that reference faces in that image and saves the faces with the specified file name prefix.  The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
277
278
279
          py::arg("img"), py::arg("faces"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
    );
    m.def("chinese_whispers_clustering", &chinese_whispers_clustering, py::arg("descriptors"), py::arg("threshold"),
Davis King's avatar
Davis King committed
280
281
        "Takes a list of descriptors and returns a list that contains a label for each descriptor. Clustering is done using dlib::chinese_whispers."
        );
282
    {
283
    typedef std::vector<full_object_detection> type;
284
    py::bind_vector<type>(m, "full_object_detections", "An array of full_object_detection objects.")
285
286
        .def("clear", &type::clear)
        .def("resize", resize<type>)
287
288
        .def("extend", extend_vector_with_python_list<full_object_detection>)
        .def(py::pickle(&getstate<type>, &setstate<type>));
289
290
291
    }
}