face_recognition.cpp 9.42 KB
Newer Older
1
2
3
// Copyright (C) 2017  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

Davis King's avatar
Davis King committed
4
#include "opaque_types.h"
5
6
7
8
9
10
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry/vector.h>
#include <dlib/dnn.h>
#include <dlib/image_transforms.h>
#include "indexing.h"
11
12
#include <dlib/image_io.h>
#include <dlib/clustering.h>
13
#include <pybind11/stl_bind.h>
14
15
16
17
18


using namespace dlib;
using namespace std;

19
20
namespace py = pybind11;

21

22
typedef matrix<double,0,1> cv;
23
24
25
26
27
28
29
30
31
32
33
34

class face_recognition_model_v1
{

public:

    face_recognition_model_v1(const std::string& model_filename)
    {
        deserialize(model_filename) >> net;
    }

    matrix<double,0,1> compute_face_descriptor (
35
        numpy_image<rgb_pixel> img,
36
37
38
39
40
41
42
43
44
        const full_object_detection& face,
        const int num_jitters
    )
    {
        std::vector<full_object_detection> faces(1, face);
        return compute_face_descriptors(img, faces, num_jitters)[0];
    }

    std::vector<matrix<double,0,1>> compute_face_descriptors (
45
        numpy_image<rgb_pixel> img,
46
47
48
49
50
51
52
        const std::vector<full_object_detection>& faces,
        const int num_jitters
    )
    {

        for (auto& f : faces)
        {
53
54
            if (f.num_parts() != 68 && f.num_parts() != 5)
                throw dlib::error("The full_object_detection must use the iBUG 300W 68 point face landmark style or dlib's 5 point style.");
55
56
57
58
59
60
61
        }


        std::vector<chip_details> dets;
        for (auto& f : faces)
            dets.push_back(get_face_chip_details(f, 150, 0.25));
        dlib::array<matrix<rgb_pixel>> face_chips;
62
        extract_image_chips(img, dets, face_chips);
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

        std::vector<matrix<double,0,1>> face_descriptors;
        face_descriptors.reserve(face_chips.size());

        if (num_jitters <= 1)
        {
            // extract descriptors and convert from float vectors to double vectors
            for (auto& d : net(face_chips,16))
                face_descriptors.push_back(matrix_cast<double>(d));
        }
        else
        {
            for (auto& fimg : face_chips)
                face_descriptors.push_back(matrix_cast<double>(mean(mat(net(jitter_image(fimg,num_jitters),16)))));
        }

        return face_descriptors;
    }

private:

84
    dlib::rand rnd;
85
86
87
88
89
90
91
92

    std::vector<matrix<rgb_pixel>> jitter_image(
        const matrix<rgb_pixel>& img,
        const int num_jitters
    )
    {
        std::vector<matrix<rgb_pixel>> crops; 
        for (int i = 0; i < num_jitters; ++i)
93
            crops.push_back(dlib::jitter_image(img,rnd));
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        return crops;
    }


    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;

    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;

    template <int N, template <typename> class BN, int stride, typename SUBNET> 
    using block  = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;

    template <int N, typename SUBNET> using ares      = relu<residual<block,N,affine,SUBNET>>;
    template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;

    template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
    template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
    template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
    template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
    template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;

    using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<
                                alevel0<
                                alevel1<
                                alevel2<
                                alevel3<
                                alevel4<
                                max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,
                                input_rgb_image_sized<150>
                                >>>>>>>>>>>>;
    anet_type net;
};

Davis King's avatar
Davis King committed
128
129
// ----------------------------------------------------------------------------------------

130
py::list chinese_whispers_clustering(py::list descriptors, float threshold)
Davis King's avatar
Davis King committed
131
{
Davis King's avatar
Davis King committed
132
    DLIB_CASSERT(threshold > 0);
133
    py::list clusters;
Davis King's avatar
Davis King committed
134

135
    size_t num_descriptors = py::len(descriptors);
Davis King's avatar
Davis King committed
136
137
138
139
140
141
142
143

    // This next bit of code creates a graph of connected objects and then uses the Chinese
    // whispers graph clustering algorithm to identify how many objects there are and which
    // objects belong to which cluster.
    std::vector<sample_pair> edges;
    std::vector<unsigned long> labels;
    for (size_t i = 0; i < num_descriptors; ++i)
    {
144
        for (size_t j = i; j < num_descriptors; ++j)
Davis King's avatar
Davis King committed
145
        {
146
147
            matrix<double,0,1>& first_descriptor = descriptors[i].cast<matrix<double,0,1>&>();
            matrix<double,0,1>& second_descriptor = descriptors[j].cast<matrix<double,0,1>&>();
Davis King's avatar
Davis King committed
148
149
150
151
152

            if (length(first_descriptor-second_descriptor) < threshold)
                edges.push_back(sample_pair(i,j));
        }
    }
Hung-Wei Chiu's avatar
Hung-Wei Chiu committed
153
    chinese_whispers(edges, labels);
Davis King's avatar
Davis King committed
154
155
156
157
158
159
160
161
    for (size_t i = 0; i < labels.size(); ++i)
    {
        clusters.append(labels[i]);
    }
    return clusters;
}

void save_face_chips (
162
    numpy_image<rgb_pixel> img,
Davis King's avatar
Davis King committed
163
    const std::vector<full_object_detection>& faces,
164
165
166
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
167
168
)
{
169

Davis King's avatar
Davis King committed
170
171
172
    int num_faces = faces.size();
    std::vector<chip_details> dets;
    for (auto& f : faces)
173
        dets.push_back(get_face_chip_details(f, size, padding));
Davis King's avatar
Davis King committed
174
    dlib::array<matrix<rgb_pixel>> face_chips;
175
    extract_image_chips(numpy_image<rgb_pixel>(img), dets, face_chips);
Davis King's avatar
Davis King committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    int i=0;
    for (auto& chip : face_chips) 
    {
        i++;
        if(num_faces > 1) 
        {
            const std::string& file_name = chip_filename + "_" + std::to_string(i) + ".jpg";
            save_jpeg(chip, file_name);
        }
        else
        {
            const std::string& file_name = chip_filename + ".jpg";
            save_jpeg(chip, file_name);
        }
    }
}

void save_face_chip (
194
    numpy_image<rgb_pixel> img,
Davis King's avatar
Davis King committed
195
    const full_object_detection& face,
196
197
198
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
199
200
201
)
{
    std::vector<full_object_detection> faces(1, face);
202
    save_face_chips(img, faces, chip_filename, size, padding);
Davis King's avatar
Davis King committed
203
204
}

205
void bind_face_recognition(py::module &m)
206
207
{
    {
208
209
210
    py::class_<face_recognition_model_v1>(m, "face_recognition_model_v1", "This object maps human faces into 128D vectors where pictures of the same person are mapped near to each other and pictures of different people are mapped far apart.  The constructor loads the face recognition model from a file. The model file is available here: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2")
        .def(py::init<std::string>())
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor, py::arg("img"),py::arg("face"),py::arg("num_jitters")=0,
211
212
213
            "Takes an image and a full_object_detection that references a face in that image and converts it into a 128D face descriptor. "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
            )
214
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptors, py::arg("img"),py::arg("faces"),py::arg("num_jitters")=0,
215
216
217
218
219
            "Takes an image and an array of full_object_detections that reference faces in that image and converts them into 128D face descriptors.  "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
            );
    }

220
    m.def("save_face_chip", &save_face_chip, 
221
	"Takes an image and a full_object_detection that references a face in that image and saves the face with the specified file name prefix.  The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.", 
222
223
224
	py::arg("img"), py::arg("face"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
    );
    m.def("save_face_chips", &save_face_chips, 
225
	"Takes an image and a full_object_detections object that reference faces in that image and saves the faces with the specified file name prefix.  The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
226
227
228
          py::arg("img"), py::arg("faces"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
    );
    m.def("chinese_whispers_clustering", &chinese_whispers_clustering, py::arg("descriptors"), py::arg("threshold"),
Davis King's avatar
Davis King committed
229
230
        "Takes a list of descriptors and returns a list that contains a label for each descriptor. Clustering is done using dlib::chinese_whispers."
        );
231
    {
232
    typedef std::vector<full_object_detection> type;
233
    py::bind_vector<type>(m, "full_object_detections", "An array of full_object_detection objects.")
234
235
        .def("clear", &type::clear)
        .def("resize", resize<type>)
236
237
        .def("extend", extend_vector_with_python_list<full_object_detection>)
        .def(py::pickle(&getstate<type>, &setstate<type>));
238
239
240
    }
}