face_recognition.cpp 13.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
// Copyright (C) 2017  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include <boost/python/slice.hpp>
#include <dlib/geometry/vector.h>
#include <dlib/dnn.h>
#include <dlib/image_transforms.h>
#include "indexing.h"
12
13
#include <dlib/image_io.h>
#include <dlib/clustering.h>
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


using namespace dlib;
using namespace std;
using namespace boost::python;

typedef matrix<double,0,1> cv;


class face_recognition_model_v1
{

public:

    face_recognition_model_v1(const std::string& model_filename)
    {
        deserialize(model_filename) >> net;

        cropper = make_shared<random_cropper>();
        cropper->set_chip_dims(150,150);
        cropper->set_randomly_flip(true);
35
        cropper->set_max_object_size(0.99999);
36
        cropper->set_background_crops_fraction(0);
37
        cropper->set_min_object_size(0.97);
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        cropper->set_translate_amount(0.02);
        cropper->set_max_rotation_degrees(3);
    }

    matrix<double,0,1> compute_face_descriptor (
        object img,
        const full_object_detection& face,
        const int num_jitters
    )
    {
        std::vector<full_object_detection> faces(1, face);
        return compute_face_descriptors(img, faces, num_jitters)[0];
    }

    std::vector<matrix<double,0,1>> compute_face_descriptors (
        object img,
        const std::vector<full_object_detection>& faces,
        const int num_jitters
    )
    {
        if (!is_rgb_python_image(img))
            throw dlib::error("Unsupported image type, must be RGB image.");

        for (auto& f : faces)
        {
63
64
            if (f.num_parts() != 68 && f.num_parts() != 5)
                throw dlib::error("The full_object_detection must use the iBUG 300W 68 point face landmark style or dlib's 5 point style.");
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        }


        std::vector<chip_details> dets;
        for (auto& f : faces)
            dets.push_back(get_face_chip_details(f, 150, 0.25));
        dlib::array<matrix<rgb_pixel>> face_chips;
        extract_image_chips(numpy_rgb_image(img), dets, face_chips);

        std::vector<matrix<double,0,1>> face_descriptors;
        face_descriptors.reserve(face_chips.size());

        if (num_jitters <= 1)
        {
            // extract descriptors and convert from float vectors to double vectors
            for (auto& d : net(face_chips,16))
                face_descriptors.push_back(matrix_cast<double>(d));
        }
        else
        {
            for (auto& fimg : face_chips)
                face_descriptors.push_back(matrix_cast<double>(mean(mat(net(jitter_image(fimg,num_jitters),16)))));
        }

        return face_descriptors;
    }

private:

    std::shared_ptr<random_cropper> cropper;

    std::vector<matrix<rgb_pixel>> jitter_image(
        const matrix<rgb_pixel>& img,
        const int num_jitters
    )
    {
        std::vector<mmod_rect> raw_boxes(1), ignored_crop_boxes;
        raw_boxes[0] = shrink_rect(get_rect(img),3);
        std::vector<matrix<rgb_pixel>> crops; 

        matrix<rgb_pixel> temp; 
        for (int i = 0; i < num_jitters; ++i)
        {
            (*cropper)(img, raw_boxes, temp, ignored_crop_boxes);
            crops.push_back(move(temp));
        }
        return crops;
    }


    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;

    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;

    template <int N, template <typename> class BN, int stride, typename SUBNET> 
    using block  = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;

    template <int N, typename SUBNET> using ares      = relu<residual<block,N,affine,SUBNET>>;
    template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;

    template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
    template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
    template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
    template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
    template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;

    using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<
                                alevel0<
                                alevel1<
                                alevel2<
                                alevel3<
                                alevel4<
                                max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,
                                input_rgb_image_sized<150>
                                >>>>>>>>>>>>;
    anet_type net;
};

Davis King's avatar
Davis King committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// ----------------------------------------------------------------------------------------

boost::python::list chinese_whispers_clustering(boost::python::list descriptors, float threshold)
{
    boost::python::list clusters;

    size_t num_descriptors = len(descriptors);

    // This next bit of code creates a graph of connected objects and then uses the Chinese
    // whispers graph clustering algorithm to identify how many objects there are and which
    // objects belong to which cluster.
    std::vector<sample_pair> edges;
    std::vector<unsigned long> labels;
    for (size_t i = 0; i < num_descriptors; ++i)
    {
        for (size_t j = i+1; j < num_descriptors; ++j)
        {
            matrix<double,0,1>& first_descriptor = boost::python::extract<matrix<double,0,1>&>(descriptors[i]);
            matrix<double,0,1>& second_descriptor = boost::python::extract<matrix<double,0,1>&>(descriptors[j]);

            if (length(first_descriptor-second_descriptor) < threshold)
                edges.push_back(sample_pair(i,j));
        }
    }
Hung-Wei Chiu's avatar
Hung-Wei Chiu committed
169
    chinese_whispers(edges, labels);
Davis King's avatar
Davis King committed
170
171
172
173
174
175
176
177
178
179
    for (size_t i = 0; i < labels.size(); ++i)
    {
        clusters.append(labels[i]);
    }
    return clusters;
}

void save_face_chips (
    object img,
    const std::vector<full_object_detection>& faces,
180
181
182
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
183
184
)
{
185
186
187
    if (!is_rgb_python_image(img))
        throw dlib::error("Unsupported image type, must be RGB image.");

Davis King's avatar
Davis King committed
188
189
190
    int num_faces = faces.size();
    std::vector<chip_details> dets;
    for (auto& f : faces)
191
        dets.push_back(get_face_chip_details(f, size, padding));
Davis King's avatar
Davis King committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    dlib::array<matrix<rgb_pixel>> face_chips;
    extract_image_chips(numpy_rgb_image(img), dets, face_chips);
    int i=0;
    for (auto& chip : face_chips) 
    {
        i++;
        if(num_faces > 1) 
        {
            const std::string& file_name = chip_filename + "_" + std::to_string(i) + ".jpg";
            save_jpeg(chip, file_name);
        }
        else
        {
            const std::string& file_name = chip_filename + ".jpg";
            save_jpeg(chip, file_name);
        }
    }
}

void save_face_chip (
    object img,
    const full_object_detection& face,
214
215
216
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
217
218
219
)
{
    std::vector<full_object_detection> faces(1, face);
220
    save_face_chips(img, faces, chip_filename, size, padding);
Davis King's avatar
Davis King committed
221
222
223
    return;
}

224
225
BOOST_PYTHON_FUNCTION_OVERLOADS(save_face_chip_with_defaults, save_face_chip, 3, 5)
BOOST_PYTHON_FUNCTION_OVERLOADS(save_face_chips_with_defaults, save_face_chips, 3, 5)
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// ----------------------------------------------------------------------------------------

boost::python::list get_face_chips (
    object img,
    const std::vector<full_object_detection>& faces,
    size_t size = 150,
    float padding = 0.25
)
{
    if (!is_rgb_python_image(img))
        throw dlib::error("Unsupported image type, must be RGB image.");

    if (faces.size() < 1) {
        throw dlib::error("No face were specified in the faces array.");
    }

    boost::python::list chips_list;

    std::vector<chip_details> dets;
    for (auto& f : faces)
        dets.push_back(get_face_chip_details(f, size, padding));
    dlib::array<matrix<rgb_pixel>> face_chips;
    extract_image_chips(numpy_rgb_image(img), dets, face_chips);

    for (auto& chip : face_chips) 
    {
        boost::python::list img;
        
Hung-Wei Chiu's avatar
Hung-Wei Chiu committed
255
        for(size_t row=0; row<size; row++) {
256
            boost::python::list row_list;
Hung-Wei Chiu's avatar
Hung-Wei Chiu committed
257
            for(size_t col=0; col<size; col++) {
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                rgb_pixel pixel = chip(row, col);
                boost::python::list item;
                
                item.append(pixel.red);
                item.append(pixel.green);
                item.append(pixel.blue);
                row_list.append(item);
            }
            img.append(row_list);
        }

        chips_list.append(img);
    }
    return chips_list;
}

boost::python::list get_face_chip (
    object img,
    const full_object_detection& face,
    size_t size = 150,
    float padding = 0.25
)
{
    std::vector<full_object_detection> faces(1, face);
    boost::python::list result = get_face_chips(img, faces, size, padding);
    size_t num_images = boost::python::len(result);
    if(num_images == 1) {
        return boost::python::extract<boost::python::list>(result[0]); 
    } else {
        throw dlib::error("No face chips found!");
    }
}

BOOST_PYTHON_FUNCTION_OVERLOADS(get_face_chip_with_defaults, get_face_chip, 2, 4)
BOOST_PYTHON_FUNCTION_OVERLOADS(get_face_chips_with_defaults, get_face_chips, 2, 4)


295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// ----------------------------------------------------------------------------------------

void bind_face_recognition()
{
    using boost::python::arg;
    {
    class_<face_recognition_model_v1>("face_recognition_model_v1", "This object maps human faces into 128D vectors where pictures of the same person are mapped near to each other and pictures of different people are mapped far apart.  The constructor loads the face recognition model from a file. The model file is available here: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2", init<std::string>())
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor, (arg("img"),arg("face"),arg("num_jitters")=0),
            "Takes an image and a full_object_detection that references a face in that image and converts it into a 128D face descriptor. "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
            )
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptors, (arg("img"),arg("faces"),arg("num_jitters")=0),
            "Takes an image and an array of full_object_detections that reference faces in that image and converts them into 128D face descriptors.  "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
            );
    }

312
313
314
315
316
317
318
319
    def("save_face_chip", &save_face_chip, save_face_chip_with_defaults(
	"Takes an image and a full_object_detection that references a face in that image and saves the face with the specified file name prefix.  The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.", 
	(arg("img"), arg("face"), arg("chip_filename"), arg("size"), arg("padding"))
    ));
    def("save_face_chips", &save_face_chips, save_face_chips_with_defaults(
	"Takes an image and a full_object_detections object that reference faces in that image and saves the faces with the specified file name prefix.  The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
	(arg("img"), arg("faces"), arg("chip_filename"), arg("size"), arg("padding"))
    ));
320
321
322
323
324
325
326
327
    def("get_face_chip", &get_face_chip, get_face_chip_with_defaults(
	"Takes an image and a full_object_detection that references a face in that image and returns the face as a list of lists representing the image.  The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.", 
	(arg("img"), arg("face"), arg("size"), arg("padding"))
    ));
    def("get_face_chips", &get_face_chips, get_face_chips_with_defaults(
	"Takes an image and a full_object_detections object that reference faces in that image and returns the faces as a list of list of lists representing the image.  The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
	(arg("img"), arg("faces"), arg("size"), arg("padding"))
    ));
Davis King's avatar
Davis King committed
328
329
330
331
    def("chinese_whispers_clustering", &chinese_whispers_clustering, (arg("descriptors"), arg("threshold")),
        "Takes a list of descriptors and returns a list that contains a label for each descriptor. Clustering is done using dlib::chinese_whispers."
        );

332
    {   
333
334
335
336
337
338
339
340
341
    typedef std::vector<full_object_detection> type;
    class_<type>("full_object_detections", "An array of full_object_detection objects.")
        .def(vector_indexing_suite<type>())
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def_pickle(serialize_pickle<type>());
    }
}