"tools/git@developer.sourcefind.cn:OpenDAS/dgl.git" did not exist on "61b6edabae3e3302c255f12fbe737507e1488fc0"
face_recognition.cpp 9.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
// Copyright (C) 2017  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry/vector.h>
#include <dlib/dnn.h>
#include <dlib/image_transforms.h>
#include "indexing.h"
10
11
#include <dlib/image_io.h>
#include <dlib/clustering.h>
12
#include <pybind11/stl_bind.h>
13
14
15
16
17


using namespace dlib;
using namespace std;

18
19
20
namespace py = pybind11;

PYBIND11_MAKE_OPAQUE(std::vector<full_object_detection>);
21

22
typedef matrix<double,0,1> cv;
23
24
25
26
27
28
29
30
31
32
33
34

class face_recognition_model_v1
{

public:

    face_recognition_model_v1(const std::string& model_filename)
    {
        deserialize(model_filename) >> net;
    }

    matrix<double,0,1> compute_face_descriptor (
35
        py::object img,
36
37
38
39
40
41
42
43
44
        const full_object_detection& face,
        const int num_jitters
    )
    {
        std::vector<full_object_detection> faces(1, face);
        return compute_face_descriptors(img, faces, num_jitters)[0];
    }

    std::vector<matrix<double,0,1>> compute_face_descriptors (
45
        py::object img,
46
47
48
49
50
51
52
53
54
        const std::vector<full_object_detection>& faces,
        const int num_jitters
    )
    {
        if (!is_rgb_python_image(img))
            throw dlib::error("Unsupported image type, must be RGB image.");

        for (auto& f : faces)
        {
55
56
            if (f.num_parts() != 68 && f.num_parts() != 5)
                throw dlib::error("The full_object_detection must use the iBUG 300W 68 point face landmark style or dlib's 5 point style.");
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        }


        std::vector<chip_details> dets;
        for (auto& f : faces)
            dets.push_back(get_face_chip_details(f, 150, 0.25));
        dlib::array<matrix<rgb_pixel>> face_chips;
        extract_image_chips(numpy_rgb_image(img), dets, face_chips);

        std::vector<matrix<double,0,1>> face_descriptors;
        face_descriptors.reserve(face_chips.size());

        if (num_jitters <= 1)
        {
            // extract descriptors and convert from float vectors to double vectors
            for (auto& d : net(face_chips,16))
                face_descriptors.push_back(matrix_cast<double>(d));
        }
        else
        {
            for (auto& fimg : face_chips)
                face_descriptors.push_back(matrix_cast<double>(mean(mat(net(jitter_image(fimg,num_jitters),16)))));
        }

        return face_descriptors;
    }

private:

86
    dlib::rand rnd;
87
88
89
90
91
92
93
94

    std::vector<matrix<rgb_pixel>> jitter_image(
        const matrix<rgb_pixel>& img,
        const int num_jitters
    )
    {
        std::vector<matrix<rgb_pixel>> crops; 
        for (int i = 0; i < num_jitters; ++i)
95
            crops.push_back(dlib::jitter_image(img,rnd));
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        return crops;
    }


    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;

    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;

    template <int N, template <typename> class BN, int stride, typename SUBNET> 
    using block  = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;

    template <int N, typename SUBNET> using ares      = relu<residual<block,N,affine,SUBNET>>;
    template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;

    template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
    template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
    template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
    template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
    template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;

    using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<
                                alevel0<
                                alevel1<
                                alevel2<
                                alevel3<
                                alevel4<
                                max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,
                                input_rgb_image_sized<150>
                                >>>>>>>>>>>>;
    anet_type net;
};

Davis King's avatar
Davis King committed
130
131
// ----------------------------------------------------------------------------------------

132
py::list chinese_whispers_clustering(py::list descriptors, float threshold)
Davis King's avatar
Davis King committed
133
{
Davis King's avatar
Davis King committed
134
    DLIB_CASSERT(threshold > 0);
135
    py::list clusters;
Davis King's avatar
Davis King committed
136

137
    size_t num_descriptors = py::len(descriptors);
Davis King's avatar
Davis King committed
138
139
140
141
142
143
144
145

    // This next bit of code creates a graph of connected objects and then uses the Chinese
    // whispers graph clustering algorithm to identify how many objects there are and which
    // objects belong to which cluster.
    std::vector<sample_pair> edges;
    std::vector<unsigned long> labels;
    for (size_t i = 0; i < num_descriptors; ++i)
    {
146
        for (size_t j = i; j < num_descriptors; ++j)
Davis King's avatar
Davis King committed
147
        {
148
149
            matrix<double,0,1>& first_descriptor = descriptors[i].cast<matrix<double,0,1>&>();
            matrix<double,0,1>& second_descriptor = descriptors[j].cast<matrix<double,0,1>&>();
Davis King's avatar
Davis King committed
150
151
152
153
154

            if (length(first_descriptor-second_descriptor) < threshold)
                edges.push_back(sample_pair(i,j));
        }
    }
Hung-Wei Chiu's avatar
Hung-Wei Chiu committed
155
    chinese_whispers(edges, labels);
Davis King's avatar
Davis King committed
156
157
158
159
160
161
162
163
    for (size_t i = 0; i < labels.size(); ++i)
    {
        clusters.append(labels[i]);
    }
    return clusters;
}

void save_face_chips (
164
    py::object img,
Davis King's avatar
Davis King committed
165
    const std::vector<full_object_detection>& faces,
166
167
168
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
169
170
)
{
171
172
173
    if (!is_rgb_python_image(img))
        throw dlib::error("Unsupported image type, must be RGB image.");

Davis King's avatar
Davis King committed
174
175
176
    int num_faces = faces.size();
    std::vector<chip_details> dets;
    for (auto& f : faces)
177
        dets.push_back(get_face_chip_details(f, size, padding));
Davis King's avatar
Davis King committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    dlib::array<matrix<rgb_pixel>> face_chips;
    extract_image_chips(numpy_rgb_image(img), dets, face_chips);
    int i=0;
    for (auto& chip : face_chips) 
    {
        i++;
        if(num_faces > 1) 
        {
            const std::string& file_name = chip_filename + "_" + std::to_string(i) + ".jpg";
            save_jpeg(chip, file_name);
        }
        else
        {
            const std::string& file_name = chip_filename + ".jpg";
            save_jpeg(chip, file_name);
        }
    }
}

void save_face_chip (
198
    py::object img,
Davis King's avatar
Davis King committed
199
    const full_object_detection& face,
200
201
202
    const std::string& chip_filename,
    size_t size = 150,
    float padding = 0.25
Davis King's avatar
Davis King committed
203
204
205
)
{
    std::vector<full_object_detection> faces(1, face);
206
    save_face_chips(img, faces, chip_filename, size, padding);
Davis King's avatar
Davis King committed
207
208
209
    return;
}

210
void bind_face_recognition(py::module &m)
211
212
{
    {
213
214
215
    py::class_<face_recognition_model_v1>(m, "face_recognition_model_v1", "This object maps human faces into 128D vectors where pictures of the same person are mapped near to each other and pictures of different people are mapped far apart.  The constructor loads the face recognition model from a file. The model file is available here: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2")
        .def(py::init<std::string>())
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor, py::arg("img"),py::arg("face"),py::arg("num_jitters")=0,
216
217
218
            "Takes an image and a full_object_detection that references a face in that image and converts it into a 128D face descriptor. "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
            )
219
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptors, py::arg("img"),py::arg("faces"),py::arg("num_jitters")=0,
220
221
222
223
224
            "Takes an image and an array of full_object_detections that reference faces in that image and converts them into 128D face descriptors.  "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
            );
    }

225
    m.def("save_face_chip", &save_face_chip, 
226
	"Takes an image and a full_object_detection that references a face in that image and saves the face with the specified file name prefix.  The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.", 
227
228
229
	py::arg("img"), py::arg("face"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
    );
    m.def("save_face_chips", &save_face_chips, 
230
	"Takes an image and a full_object_detections object that reference faces in that image and saves the faces with the specified file name prefix.  The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
231
232
233
          py::arg("img"), py::arg("faces"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
    );
    m.def("chinese_whispers_clustering", &chinese_whispers_clustering, py::arg("descriptors"), py::arg("threshold"),
Davis King's avatar
Davis King committed
234
235
        "Takes a list of descriptors and returns a list that contains a label for each descriptor. Clustering is done using dlib::chinese_whispers."
        );
236
    {
237
    typedef std::vector<full_object_detection> type;
238
    py::bind_vector<type>(m, "full_object_detections", "An array of full_object_detection objects.")
239
240
        .def("clear", &type::clear)
        .def("resize", resize<type>)
241
242
        .def("extend", extend_vector_with_python_list<full_object_detection>)
        .def(py::pickle(&getstate<type>, &setstate<type>));
243
244
245
    }
}