object_detection.cpp 27.1 KB
Newer Older
1
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
2
3
// License: Boost Software License   See LICENSE.txt for the full license.

Davis King's avatar
Davis King committed
4
#include "opaque_types.h"
5
6
7
8
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
Patrick Snape's avatar
Patrick Snape committed
9
#include "simple_object_detector.h"
10
#include "simple_object_detector_py.h"
Patrick Snape's avatar
Patrick Snape committed
11
#include "conversion.h"
12
13
14

using namespace dlib;
using namespace std;
15
16

namespace py = pybind11;
17
18
19

// ----------------------------------------------------------------------------------------

Patrick Snape's avatar
Patrick Snape committed
20
21
22
23
24
25
26
27
28
string print_simple_test_results(const simple_test_results& r)
{
    std::ostringstream sout;
    sout << "precision: "<<r.precision << ", recall: "<< r.recall << ", average precision: " << r.average_precision;
    return sout.str();
}

// ----------------------------------------------------------------------------------------

29
inline simple_object_detector_py train_simple_object_detector_on_images_py (
30
31
    const py::list& pyimages,
    const py::list& pyboxes,
32
    const simple_object_detector_training_options& options
33
34
)
{
35
36
    const unsigned long num_images = py::len(pyimages);
    if (num_images != py::len(pyboxes))
37
38
39
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
40
41
    std::vector<std::vector<rectangle>> ignore(num_images), boxes(num_images);
    dlib::array<numpy_image<rgb_pixel>> images(num_images);
Patrick Snape's avatar
Patrick Snape committed
42
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
43

44
    return train_simple_object_detector_on_images("", images, boxes, ignore, options);
45
46
}

47
inline simple_test_results test_simple_object_detector_with_images_py (
48
49
        const py::list& pyimages,
        const py::list& pyboxes,
50
        simple_object_detector& detector,
51
        const unsigned int upsampling_amount
52
53
)
{
54
55
    const unsigned long num_images = py::len(pyimages);
    if (num_images != py::len(pyboxes))
56
57
58
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
59
60
    std::vector<std::vector<rectangle>> ignore(num_images), boxes(num_images);
    dlib::array<numpy_image<rgb_pixel>> images(num_images);
Patrick Snape's avatar
Patrick Snape committed
61
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
62

63
64
65
66
67
68
    return test_simple_object_detector_with_images(images, upsampling_amount, boxes, ignore, detector);
}

// ----------------------------------------------------------------------------------------

inline simple_test_results test_simple_object_detector_py_with_images_py (
69
70
        const py::list& pyimages,
        const py::list& pyboxes,
71
72
73
74
75
76
77
78
79
80
81
82
83
        simple_object_detector_py& detector,
        const int upsampling_amount
)
{
    // Allow users to pass an upsampling amount ELSE use the one cached on the object
    // Anything less than 0 is ignored and the cached value is used.
    unsigned int final_upsampling_amount = 0;
    if (upsampling_amount >= 0)
        final_upsampling_amount = upsampling_amount;
    else
        final_upsampling_amount = detector.upsampling_amount;

    return test_simple_object_detector_with_images_py(pyimages, pyboxes, detector.detector, final_upsampling_amount);
84
85
}

86
87
// ----------------------------------------------------------------------------------------

88
inline void find_candidate_object_locations_py (
89
    py::array pyimage,
90
91
    py::list& pyboxes,
    py::tuple pykvals,
92
93
94
95
    unsigned long min_size,
    unsigned long max_merging_iterations
)
{
96
    if (py::len(pykvals) != 3)
97
98
        throw dlib::error("kvals must be a tuple with three elements for start, end, num.");

99
100
101
    double start = pykvals[0].cast<double>();
    double end   = pykvals[1].cast<double>();
    long num     = pykvals[2].cast<long>();
102
103
104
    matrix_range_exp<double> kvals = linspace(start, end, num);

    std::vector<rectangle> rects;
105
    const long count = py::len(pyboxes);
106
107
108
    // Copy any rectangles in the input pyboxes into rects so that any rectangles will be
    // properly deduped in the resulting output.
    for (long i = 0; i < count; ++i)
109
        rects.push_back(pyboxes[i].cast<rectangle>());
110
    // Find candidate objects
111
112
113
114
115
116
    if (is_image<unsigned char>(pyimage))
        find_candidate_object_locations(numpy_image<unsigned char>(pyimage), rects, kvals, min_size, max_merging_iterations);
    else if (is_image<rgb_pixel>(pyimage))
        find_candidate_object_locations(numpy_image<rgb_pixel>(pyimage), rects, kvals, min_size, max_merging_iterations);
    else
        throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
117
118
119
120
121
122
123
124
125

    // Collect boxes containing candidate objects
    std::vector<rectangle>::iterator iter;
    for (iter = rects.begin(); iter != rects.end(); ++iter)
        pyboxes.append(*iter);
}

// ----------------------------------------------------------------------------------------

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
std::shared_ptr<simple_object_detector_py> merge_simple_object_detectors (
    const py::list& detectors
)
{
    DLIB_CASSERT(len(detectors) > 0);
    std::vector<simple_object_detector> temp;
    for (auto& d : detectors)
        temp.push_back(d.cast<simple_object_detector_py>().detector);

    simple_object_detector_py result;
    result.detector = simple_object_detector(temp);
    result.upsampling_amount = detectors[0].cast<simple_object_detector_py>().upsampling_amount;
    return std::make_shared<simple_object_detector_py>(result);
}

// ----------------------------------------------------------------------------------------

143
void bind_object_detection(py::module& m)
144
{
145
146
    {
    typedef simple_object_detector_training_options type;
147
    py::class_<type>(m, "simple_object_detector_training_options",
Davis King's avatar
Davis King committed
148
        "This object is a container for the options to the train_simple_object_detector() routine.")
149
        .def(py::init())
150
151
        .def("__str__", &::print_simple_object_detector_training_options)
        .def("__repr__", &::print_simple_object_detector_training_options)
152
        .def_readwrite("be_verbose", &type::be_verbose,
153
"If true, train_simple_object_detector() will print out a lot of information to the screen while training.")
154
        .def_readwrite("add_left_right_image_flips", &type::add_left_right_image_flips,
Davis King's avatar
Davis King committed
155
156
"if true, train_simple_object_detector() will assume the objects are \n\
left/right symmetric and add in left right flips of the training \n\
157
images.  This doubles the size of the training dataset.")
158
        .def_readwrite("detection_window_size", &type::detection_window_size,
Davis King's avatar
Davis King committed
159
                                               "The sliding window used will have about this many pixels inside it.")
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        .def_readwrite("nuclear_norm_regularization_strength", &type::nuclear_norm_regularization_strength,
"This detector works by convolving a filter over a HOG feature image.  If that \n\
filter is separable then the convolution can be performed much faster.  The \n\
nuclear_norm_regularization_strength parameter encourages the machine learning \n\
algorithm to learn a separable filter.  A value of 0 disables this feature, but \n\
any non-zero value places a nuclear norm regularizer on the objective function \n\
and this encourages the learning of a separable filter.  Note that setting \n\
nuclear_norm_regularization_strength to a non-zero value can make the training \n\
process take significantly longer, so be patient when using it." 
            /*!
            This detector works by convolving a filter over a HOG feature image.  If that
            filter is separable then the convolution can be performed much faster.  The
            nuclear_norm_regularization_strength parameter encourages the machine learning
            algorithm to learn a separable filter.  A value of 0 disables this feature, but
            any non-zero value places a nuclear norm regularizer on the objective function
            and this encourages the learning of a separable filter.  Note that setting
            nuclear_norm_regularization_strength to a non-zero value can make the training
            process take significantly longer, so be patient when using it.
            !*/
                                               )
180
        .def_readwrite("C", &type::C,
Davis King's avatar
Davis King committed
181
182
183
184
"C is the usual SVM C regularization parameter.  So it is passed to \n\
structural_object_detection_trainer::set_c().  Larger values of C \n\
will encourage the trainer to fit the data better but might lead to \n\
overfitting.  Therefore, you must determine the proper setting of \n\
185
this parameter experimentally.")
186
        .def_readwrite("epsilon", &type::epsilon,
187
"epsilon is the stopping epsilon.  Smaller values make the trainer's \n\
188
solver more accurate but might take longer to train.")
189
        .def_readwrite("num_threads", &type::num_threads,
Davis King's avatar
Davis King committed
190
191
"train_simple_object_detector() will use this many threads of \n\
execution.  Set this to the number of CPU cores on your machine to \n\
192
obtain the fastest training speed.")
193
        .def_readwrite("upsample_limit", &type::upsample_limit,
194
195
196
197
"train_simple_object_detector() will upsample images if needed \n\
no more than upsample_limit times. Value 0 will forbid trainer to \n\
upsample any images. If trainer is unable to fit all boxes with \n\
required upsample_limit, exception will be thrown. Higher values \n\
198
of upsample_limit exponentially increases memory requirements. \n\
199
Values higher than 2 (default) are not recommended.");
200
    }
201

202
    {
203
    typedef simple_test_results type;
204
205
206
207
    py::class_<type>(m, "simple_test_results")
        .def_readwrite("precision", &type::precision)
        .def_readwrite("recall", &type::recall)
        .def_readwrite("average_precision", &type::average_precision)
208
209
        .def("__str__", &::print_simple_test_results)
        .def("__repr__", &::print_simple_test_results);
210
211
    }

212
    // Here, kvals is actually the result of linspace(start, end, num) and it is different from kvals used
213
    // in find_candidate_object_locations(). See dlib/image_transforms/segment_image_abstract.h for more details.
214
    m.def("find_candidate_object_locations", find_candidate_object_locations_py, py::arg("image"), py::arg("rects"), py::arg("kvals")=py::make_tuple(50, 200, 3), py::arg("min_size")=20, py::arg("max_merging_iterations")=50,
215
216
217
"Returns found candidate objects\n\
requires\n\
    - image == an image object which is a numpy ndarray\n\
218
219
220
    - len(kvals) == 3\n\
    - kvals should be a tuple that specifies the range of k values to use.  In\n\
      particular, it should take the form (start, end, num) where num > 0. \n\
221
222
223
224
225
226
227
228
229
230
ensures\n\
    - This function takes an input image and generates a set of candidate\n\
      rectangles which are expected to bound any objects in the image.  It does\n\
      this by running a version of the segment_image() routine on the image and\n\
      then reports rectangles containing each of the segments as well as rectangles\n\
      containing unions of adjacent segments.  The basic idea is described in the\n\
      paper: \n\
          Segmentation as Selective Search for Object Recognition by Koen E. A. van de Sande, et al.\n\
      Note that this function deviates from what is described in the paper slightly. \n\
      See the code for details.\n\
231
232
233
    - The basic segmentation is performed kvals[2] times, each time with the k parameter\n\
      (see segment_image() and the Felzenszwalb paper for details on k) set to a different\n\
      value from the range of numbers linearly spaced between kvals[0] to kvals[1].\n\
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    - When doing the basic segmentations prior to any box merging, we discard all\n\
      rectangles that have an area < min_size.  Therefore, all outputs and\n\
      subsequent merged rectangles are built out of rectangles that contain at\n\
      least min_size pixels.  Note that setting min_size to a smaller value than\n\
      you might otherwise be interested in using can be useful since it allows a\n\
      larger number of possible merged boxes to be created.\n\
    - There are max_merging_iterations rounds of neighboring blob merging.\n\
      Therefore, this parameter has some effect on the number of output rectangles\n\
      you get, with larger values of the parameter giving more output rectangles.\n\
    - This function appends the output rectangles into #rects.  This means that any\n\
      rectangles in rects before this function was called will still be in there\n\
      after it terminates.  Note further that #rects will not contain any duplicate\n\
      rectangles.  That is, for all valid i and j where i != j it will be true\n\
      that:\n\
        - #rects[i] != rects[j]");

250
    m.def("get_frontal_face_detector", get_frontal_face_detector,
251
252
        "Returns the default face detector");

253
254
    m.def("train_simple_object_detector", train_simple_object_detector,
        py::arg("dataset_filename"), py::arg("detector_output_filename"), py::arg("options"),
255
256
257
258
259
260
261
262
263
264
265
"requires \n\
    - options.C > 0 \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images in the XML file \n\
      dataset_filename.  This function assumes the file dataset_filename is in the \n\
      XML format produced by dlib's save_image_dataset_metadata() routine. \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
266
    - The trained object detector is serialized to the file detector_output_filename.");
267

268
269
    m.def("train_simple_object_detector", train_simple_object_detector_on_images_py,
        py::arg("images"), py::arg("boxes"), py::arg("options"),
270
271
272
273
274
275
276
277
278
279
280
281
"requires \n\
    - options.C > 0 \n\
    - len(images) == len(boxes) \n\
    - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
    - boxes should be a list of lists of dlib.rectangle object. \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images and bounding boxes.  \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
282
    - The trained object detector is returned.");
283

284
285
    m.def("test_simple_object_detector", test_simple_object_detector,
        py::arg("dataset_filename"), py::arg("detector_filename"), py::arg("upsampling_amount")=-1,
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
            "ensures \n\
                - Loads an image dataset from dataset_filename.  We assume dataset_filename is \n\
                  a file using the XML format written by save_image_dataset_metadata(). \n\
                - Loads a simple_object_detector from the file detector_filename.  This means \n\
                  detector_filename should be a file produced by the train_simple_object_detector()  \n\
                  routine. \n\
                - This function tests the detector against the dataset and returns the \n\
                  precision, recall, and average precision of the detector.  In fact, The \n\
                  return value of this function is identical to that of dlib's \n\
                  test_object_detection_function() routine.  Therefore, see the documentation \n\
                  for test_object_detection_function() for a detailed definition of these \n\
                  metrics. \n\
                - if upsampling_amount>=0 then we upsample the data by upsampling_amount rather than \n\
                  use any upsampling amount that happens to be encoded in the given detector.  If upsampling_amount<0 \n\
                  then we use the upsampling amount the detector wants to use."
        );

    m.def("test_simple_object_detector", test_simple_object_detector2,
        py::arg("dataset_filename"), py::arg("detector"), py::arg("upsampling_amount")=-1,
            "ensures \n\
306
307
308
309
310
311
312
313
314
315
                - Loads an image dataset from dataset_filename.  We assume dataset_filename is \n\
                  a file using the XML format written by save_image_dataset_metadata(). \n\
                - Loads a simple_object_detector from the file detector_filename.  This means \n\
                  detector_filename should be a file produced by the train_simple_object_detector()  \n\
                  routine. \n\
                - This function tests the detector against the dataset and returns the \n\
                  precision, recall, and average precision of the detector.  In fact, The \n\
                  return value of this function is identical to that of dlib's \n\
                  test_object_detection_function() routine.  Therefore, see the documentation \n\
                  for test_object_detection_function() for a detailed definition of these \n\
316
317
318
319
                  metrics. \n\
                - if upsampling_amount>=0 then we upsample the data by upsampling_amount rather than \n\
                  use any upsampling amount that happens to be encoded in the given detector.  If upsampling_amount<0 \n\
                  then we use the upsampling amount the detector wants to use."
320
        );
321

322
323
    m.def("test_simple_object_detector", test_simple_object_detector_with_images_py,
            py::arg("images"), py::arg("boxes"), py::arg("detector"), py::arg("upsampling_amount")=0,
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
            "requires \n\
               - len(images) == len(boxes) \n\
               - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
               - boxes should be a list of lists of dlib.rectangle object. \n\
               - Optionally, take the number of times to upsample the testing images (upsampling_amount >= 0). \n\
             ensures \n\
               - Loads a simple_object_detector from the file detector_filename.  This means \n\
                 detector_filename should be a file produced by the train_simple_object_detector() \n\
                 routine. \n\
               - This function tests the detector against the dataset and returns the \n\
                 precision, recall, and average precision of the detector.  In fact, The \n\
                 return value of this function is identical to that of dlib's \n\
                 test_object_detection_function() routine.  Therefore, see the documentation \n\
                 for test_object_detection_function() for a detailed definition of these \n\
                 metrics. "
    );

341
    m.def("test_simple_object_detector", test_simple_object_detector_py_with_images_py,
342
            // Please see test_simple_object_detector_py_with_images_py for the reason upsampling_amount is -1
343
            py::arg("images"), py::arg("boxes"), py::arg("detector"), py::arg("upsampling_amount")=-1,
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
            "requires \n\
               - len(images) == len(boxes) \n\
               - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
               - boxes should be a list of lists of dlib.rectangle object. \n\
             ensures \n\
               - Loads a simple_object_detector from the file detector_filename.  This means \n\
                 detector_filename should be a file produced by the train_simple_object_detector() \n\
                 routine. \n\
               - This function tests the detector against the dataset and returns the \n\
                 precision, recall, and average precision of the detector.  In fact, The \n\
                 return value of this function is identical to that of dlib's \n\
                 test_object_detection_function() routine.  Therefore, see the documentation \n\
                 for test_object_detection_function() for a detailed definition of these \n\
                 metrics. "
    );
359
    {
Patrick Snape's avatar
Patrick Snape committed
360
    typedef simple_object_detector type;
361
    py::class_<type, std::shared_ptr<type>>(m, "fhog_object_detector",
362
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
363
        .def(py::init(&load_object_from_file<type>),
364
365
366
"Loads an object detector from a file that contains the output of the \n\
train_simple_object_detector() routine or a serialized C++ object of type\n\
object_detector<scan_fhog_pyramid<pyramid_down<6>>>.")
367
        .def("__call__", run_detector_with_upscale2, py::arg("image"), py::arg("upsample_num_times")=0,
368
369
370
371
372
373
374
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
375
    - Upsamples the image upsample_num_times before running the basic \n\
Davis King's avatar
Davis King committed
376
      detector.")
377
       .def("run", run_rect_detector, py::arg("image"), py::arg("upsample_num_times")=0, py::arg("adjust_threshold")=0.0,
378
379
380
381
382
383
384
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a tuple of (list of detections, list of scores, list of weight_indices).   \n\
385
    - Upsamples the image upsample_num_times before running the basic \n\
Davis King's avatar
Davis King committed
386
      detector.")
387
       .def_static("run_multiple", run_multiple_rect_detectors, py::arg("detectors"),  py::arg("image"), py::arg("upsample_num_times")=0, py::arg("adjust_threshold")=0.0,
388
389
390
391
392
393
394
395
396
"requires \n\
    - detectors is a list of detectors. \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the list of object detectors at once on the input image and returns \n\
      a tuple of (list of detections, list of scores, list of weight_indices).   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
Davis King's avatar
Davis King committed
397
      detector.")
398
399
           .def("save", save_simple_object_detector, py::arg("detector_output_filename"), "Save a simple_object_detector to the provided path.")
           .def(py::pickle(&getstate<type>, &setstate<type>));
400
    }
401
    {
402
    typedef simple_object_detector_py type;
403
    py::class_<type, std::shared_ptr<type>>(m, "simple_object_detector",
404
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        .def(py::init(&merge_simple_object_detectors), py::arg("detectors"), 
"This version of the constructor builds a simple_object_detector from a \n\
bunch of other simple_object_detectors.  It essentially packs them together \n\
so that when you run the detector it's like calling run_multiple().  Except \n\
in this case the non-max suppression is applied to them all as a group.  So \n\
unlike run_multiple(), each detector competes in the non-max suppression." 
            /*!
                This version of the constructor builds a simple_object_detector from a
                bunch of other simple_object_detectors.  It essentially packs them together
                so that when you run the detector it's like calling run_multiple().  Except
                in this case the non-max suppression is applied to them all as a group.  So
                unlike run_multiple(), each detector competes in the non-max suppression.
            !*/
            )
419
        .def(py::init(&load_object_from_file<type>),
420
421
"Loads a simple_object_detector from a file that contains the output of the \n\
train_simple_object_detector() routine.")
422
        .def("__call__", &type::run_detector1, py::arg("image"), py::arg("upsample_num_times"),
423
424
425
426
427
428
429
430
431
432
433
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
      detector.  If you don't know how many times you want to upsample then \n\
      don't provide a value for upsample_num_times and an appropriate \n\
      default will be used.")
434
        .def("__call__", &type::run_detector2, py::arg("image"),
435
436
437
438
439
440
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.")
441
        .def("save", save_simple_object_detector_py, py::arg("detector_output_filename"), "Save a simple_object_detector to the provided path.")
442
        .def_readwrite("upsampling_amount", &type::upsampling_amount, "The detector upsamples the image this many times before running.")
443
444
445
446
447
448
449
450
451
452
453
        .def_static("run_multiple", run_multiple_rect_detectors, py::arg("detectors"),  py::arg("image"), py::arg("upsample_num_times")=0, py::arg("adjust_threshold")=0.0,
"requires \n\
    - detectors is a list of detectors. \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the list of object detectors at once on the input image and returns \n\
      a tuple of (list of detections, list of scores, list of weight_indices).   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
      detector.")
454
        .def(py::pickle(&getstate<type>, &setstate<type>));
455
    }
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494


    m.def("num_separable_filters", [](const simple_object_detector_py& obj) { return num_separable_filters(obj.detector); },
        py::arg("detector"),
        "Returns the number of separable filters necessary to represent the HOG filters in the given detector."
    );

    m.def("threshold_filter_singular_values", [](const simple_object_detector_py& obj, double thresh) {
        auto temp = obj;
        temp.detector = threshold_filter_singular_values(obj.detector, thresh);
        return temp;
    }, py::arg("detector"), py::arg("thresh"),
"requires \n\
    - thresh >= 0 \n\
ensures \n\
    - Removes all components of the filters in the given detector that have \n\
      singular values that are smaller than the given threshold.  Therefore, this \n\
      function allows you to control how many separable filters are in a detector. \n\
      In particular, as thresh gets larger the quantity \n\
      num_separable_filters(threshold_filter_singular_values(detector,thresh)) \n\
      will generally get smaller and therefore give a faster running detector. \n\
      However, note that at some point a large enough thresh will drop too much \n\
      information from the filters and their accuracy will suffer.   \n\
    - returns the updated detector" 
    /*!
        requires
            - thresh >= 0
        ensures
            - Removes all components of the filters in the given detector that have
              singular values that are smaller than the given threshold.  Therefore, this
              function allows you to control how many separable filters are in a detector.
              In particular, as thresh gets larger the quantity
              num_separable_filters(threshold_filter_singular_values(detector,thresh))
              will generally get smaller and therefore give a faster running detector.
              However, note that at some point a large enough thresh will drop too much
              information from the filters and their accuracy will suffer.  
            - returns the updated detector
    !*/
    );
495
496
497
}

// ----------------------------------------------------------------------------------------