object_detection.cpp 19.1 KB
Newer Older
1
2
3
4
5
6
7
8
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
9
#include "indexing.h"
Patrick Snape's avatar
Patrick Snape committed
10
#include "simple_object_detector.h"
Patrick Snape's avatar
Patrick Snape committed
11
#include "conversion.h"
12
13
14
15
16
17
18

using namespace dlib;
using namespace std;
using namespace boost::python;

// ----------------------------------------------------------------------------------------

Patrick Snape's avatar
Patrick Snape committed
19
20
21
22
23
24
25
26
27
string print_simple_test_results(const simple_test_results& r)
{
    std::ostringstream sout;
    sout << "precision: "<<r.precision << ", recall: "<< r.recall << ", average precision: " << r.average_precision;
    return sout.str();
}

// ----------------------------------------------------------------------------------------

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
long left(const rectangle& r) { return r.left(); }
long top(const rectangle& r) { return r.top(); }
long right(const rectangle& r) { return r.right(); }
long bottom(const rectangle& r) { return r.bottom(); }
long width(const rectangle& r) { return r.width(); }
long height(const rectangle& r) { return r.height(); }

string print_rectangle_str(const rectangle& r)
{
    std::ostringstream sout;
    sout << r;
    return sout.str();
}

string print_rectangle_repr(const rectangle& r)
{
    std::ostringstream sout;
    sout << "rectangle(" << r.left() << "," << r.top() << "," << r.right() << "," << r.bottom() << ")";
    return sout.str();
}

// ----------------------------------------------------------------------------------------

Patrick Snape's avatar
Patrick Snape committed
51
52
std::vector<rectangle> run_detector_with_upscale (
    simple_object_detector& detector,
53
54
55
56
57
58
59
60
    object img,
    const unsigned int upsampling_amount
)
{
    pyramid_down<2> pyr;

    if (is_gray_python_image(img))
    {
61
        array2d<unsigned char> temp;
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        if (upsampling_amount == 0)
        {
            return detector(numpy_gray_image(img));
        }
        else
        {
            pyramid_up(numpy_gray_image(img), temp, pyr);
            unsigned int levels = upsampling_amount-1;
            while (levels > 0)
            {
                levels--;
                pyramid_up(temp);
            }

            std::vector<rectangle> res = detector(temp);
            for (unsigned long i = 0; i < res.size(); ++i)
                res[i] = pyr.rect_down(res[i], upsampling_amount);
            return res;
        }
    }
    else if (is_rgb_python_image(img))
    {
84
        array2d<rgb_pixel> temp;
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        if (upsampling_amount == 0)
        {
            return detector(numpy_rgb_image(img));
        }
        else
        {
            pyramid_up(numpy_rgb_image(img), temp, pyr);
            unsigned int levels = upsampling_amount-1;
            while (levels > 0)
            {
                levels--;
                pyramid_up(temp);
            }

            std::vector<rectangle> res = detector(temp);
            for (unsigned long i = 0; i < res.size(); ++i)
                res[i] = pyr.rect_down(res[i], upsampling_amount);
            return res;
        }
    }
    else
    {
        throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
    }
}

111
112
113
114
115
116
117
118
void save_simple_object_detector(const simple_object_detector& detector, const std::string& detector_output_filename)
{
    std::ofstream fout(detector_output_filename.c_str(), std::ios::binary);
    int version = 1;
    serialize(detector, fout);
    serialize(version, fout);
}

119
120
// ----------------------------------------------------------------------------------------

121
122
123
124
125
126
127
128
129
130
131
132
133
134
inline void train_simple_object_detector_on_images_py (
    const object& pyimages,
    const object& pyboxes,
    const std::string& detector_output_filename,
    const simple_object_detector_training_options& options 
)
{
    const unsigned long num_images = len(pyimages);
    if (num_images != len(pyboxes))
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
    std::vector<std::vector<rectangle> > ignore(num_images), boxes(num_images);
    dlib::array<array2d<rgb_pixel> > images(num_images);
Patrick Snape's avatar
Patrick Snape committed
135
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
136
137
138
139

    train_simple_object_detector_on_images("", images, boxes, ignore, detector_output_filename, options);
}

140
141
142
143
144
145
146
147
148
149
150
151
152
inline simple_test_results test_simple_object_detector_with_images_py (
        const object& pyimages,
        const object& pyboxes,
        const std::string& detector_filename
)
{
    const unsigned long num_images = len(pyimages);
    if (num_images != len(pyboxes))
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
    std::vector<std::vector<rectangle> > ignore(num_images), boxes(num_images);
    dlib::array<array2d<rgb_pixel> > images(num_images);
Patrick Snape's avatar
Patrick Snape committed
153
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
154
155
156
157

    return test_simple_object_detector_with_images(images, boxes, ignore, detector_filename);
}

158
159
160
161
162
163
// ----------------------------------------------------------------------------------------

void bind_object_detection()
{
    using boost::python::arg;

Davis King's avatar
Davis King committed
164
165
    class_<simple_object_detector_training_options>("simple_object_detector_training_options", 
        "This object is a container for the options to the train_simple_object_detector() routine.")
166
        .add_property("be_verbose", &simple_object_detector_training_options::be_verbose, 
Davis King's avatar
Davis King committed
167
168
169
                                    &simple_object_detector_training_options::be_verbose,
                                    "If true, train_simple_object_detector() will print out a lot of information to the screen while training."
                                    )
170
        .add_property("add_left_right_image_flips", &simple_object_detector_training_options::add_left_right_image_flips, 
Davis King's avatar
Davis King committed
171
172
173
174
175
176
177
178
179
180
                                                    &simple_object_detector_training_options::add_left_right_image_flips,
"if true, train_simple_object_detector() will assume the objects are \n\
left/right symmetric and add in left right flips of the training \n\
images.  This doubles the size of the training dataset." 
                    /*!
                      if true, train_simple_object_detector() will assume the objects are
                      left/right symmetric and add in left right flips of the training
                      images.  This doubles the size of the training dataset.
                    !*/
                                                    )
181
        .add_property("detection_window_size", &simple_object_detector_training_options::detection_window_size,
Davis King's avatar
Davis King committed
182
183
                                               &simple_object_detector_training_options::detection_window_size,
                                               "The sliding window used will have about this many pixels inside it.")
184
        .add_property("C", &simple_object_detector_training_options::C,
Davis King's avatar
Davis King committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
                           &simple_object_detector_training_options::C,
"C is the usual SVM C regularization parameter.  So it is passed to \n\
structural_object_detection_trainer::set_c().  Larger values of C \n\
will encourage the trainer to fit the data better but might lead to \n\
overfitting.  Therefore, you must determine the proper setting of \n\
this parameter experimentally." 
                    /*!
                      C is the usual SVM C regularization parameter.  So it is passed to
                      structural_object_detection_trainer::set_c().  Larger values of C
                      will encourage the trainer to fit the data better but might lead to
                      overfitting.  Therefore, you must determine the proper setting of
                      this parameter experimentally.
                    !*/
                           )
199
200
201
202
203
204
205
206
207
        .add_property("epsilon", &simple_object_detector_training_options::epsilon,
                                 &simple_object_detector_training_options::epsilon,
"epsilon is the stopping epsilon.  Smaller values make the trainer's \n\
solver more accurate but might take longer to train." 
                    /*!
                      epsilon is the stopping epsilon.  Smaller values make the trainer's
                      solver more accurate but might take longer to train.
                    !*/
                           )
208
        .add_property("num_threads", &simple_object_detector_training_options::num_threads,
Davis King's avatar
Davis King committed
209
210
211
212
213
214
215
216
217
218
219
220
221
                                     &simple_object_detector_training_options::num_threads,
"train_simple_object_detector() will use this many threads of \n\
execution.  Set this to the number of CPU cores on your machine to \n\
obtain the fastest training speed." 
                    /*!
                      train_simple_object_detector() will use this many threads of
                      execution.  Set this to the number of CPU cores on your machine to
                      obtain the fastest training speed.
                    !*/
                                     );



222
223
224
225
226
227
228
229

    class_<simple_test_results>("simple_test_results")
        .add_property("precision", &simple_test_results::precision)
        .add_property("recall", &simple_test_results::recall)
        .add_property("average_precision", &simple_test_results::average_precision)
        .def("__str__", &::print_simple_test_results);


230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    {
    typedef rectangle type;
    class_<type>("rectangle", "This object represents a rectangular area of an image.")
        .def(init<long,long,long,long>( (arg("left"),arg("top"),arg("right"),arg("bottom")) ))
        .def("left",   &::left)
        .def("top",    &::top)
        .def("right",  &::right)
        .def("bottom", &::bottom)
        .def("width",  &::width)
        .def("height", &::height)
        .def("__str__", &::print_rectangle_str)
        .def("__repr__", &::print_rectangle_repr)
        .def_pickle(serialize_pickle<type>());
    }

    def("get_frontal_face_detector", get_frontal_face_detector, 
        "Returns the default face detector");

248
    def("train_simple_object_detector", train_simple_object_detector,
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        (arg("dataset_filename"), arg("detector_output_filename"), arg("options")),
"requires \n\
    - options.C > 0 \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images in the XML file \n\
      dataset_filename.  This function assumes the file dataset_filename is in the \n\
      XML format produced by dlib's save_image_dataset_metadata() routine. \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
    - The trained object detector is serialized to the file detector_output_filename." 
    /*!
        requires
            - options.C > 0
        ensures
            - Uses the structural_object_detection_trainer to train a
              simple_object_detector based on the labeled images in the XML file
              dataset_filename.  This function assumes the file dataset_filename is in the
              XML format produced by dlib's save_image_dataset_metadata() routine.
            - This function will apply a reasonable set of default parameters and
              preprocessing techniques to the training procedure for simple_object_detector
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
              objects.  So the point of this function is to provide you with a very easy
              way to train a basic object detector.  
            - The trained object detector is serialized to the file detector_output_filename.
    !*/
        );

    def("train_simple_object_detector", train_simple_object_detector_on_images_py,
        (arg("images"), arg("boxes"), arg("detector_output_filename"), arg("options")),
"requires \n\
    - options.C > 0 \n\
    - len(images) == len(boxes) \n\
    - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
    - boxes should be a list of lists of dlib.rectangle object. \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images and bounding boxes.  \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
    - The trained object detector is serialized to the file detector_output_filename." 
    /*!
        requires
            - options.C > 0
            - len(images) == len(boxes)
            - images should be a list of numpy matrices that represent images, either RGB or grayscale.
            - boxes should be a dlib.rectangles object (i.e. an array of rectangles).
            - boxes should be a list of lists of dlib.rectangle object.
        ensures
            - Uses the structural_object_detection_trainer to train a
              simple_object_detector based on the labeled images and bounding boxes. 
            - This function will apply a reasonable set of default parameters and
              preprocessing techniques to the training procedure for simple_object_detector
305
306
307
308
309
              objects.  So the point of this function is to provide you with a very easy
              way to train a basic object detector.  
            - The trained object detector is serialized to the file detector_output_filename.
    !*/
        );
310
311

    def("test_simple_object_detector", test_simple_object_detector,
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            (arg("dataset_filename"), arg("detector_filename")),
            "ensures \n\
                - Loads an image dataset from dataset_filename.  We assume dataset_filename is \n\
                  a file using the XML format written by save_image_dataset_metadata(). \n\
                - Loads a simple_object_detector from the file detector_filename.  This means \n\
                  detector_filename should be a file produced by the train_simple_object_detector()  \n\
                  routine. \n\
                - This function tests the detector against the dataset and returns the \n\
                  precision, recall, and average precision of the detector.  In fact, The \n\
                  return value of this function is identical to that of dlib's \n\
                  test_object_detection_function() routine.  Therefore, see the documentation \n\
                  for test_object_detection_function() for a detailed definition of these \n\
                  metrics. "
            /*!
                ensures
                    - Loads an image dataset from dataset_filename.  We assume dataset_filename is
                      a file using the XML format written by save_image_dataset_metadata().
                    - Loads a simple_object_detector from the file detector_filename.  This means
                      detector_filename should be a file produced by the train_simple_object_detector()
                      routine.
                    - This function tests the detector against the dataset and returns the
                      precision, recall, and average precision of the detector.  In fact, The
                      return value of this function is identical to that of dlib's
                      test_object_detection_function() routine.  Therefore, see the documentation
                      for test_object_detection_function() for a detailed definition of these
                      metrics.
            !*/
339
        );
340

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def("test_simple_object_detector", test_simple_object_detector_with_images_py,
            (arg("images"), arg("boxes"), arg("detector_filename")),
            "requires \n\
               - len(images) == len(boxes) \n\
               - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
               - boxes should be a list of lists of dlib.rectangle object. \n\
             ensures \n\
               - Loads a simple_object_detector from the file detector_filename.  This means \n\
                 detector_filename should be a file produced by the train_simple_object_detector() \n\
                 routine. \n\
               - This function tests the detector against the dataset and returns the \n\
                 precision, recall, and average precision of the detector.  In fact, The \n\
                 return value of this function is identical to that of dlib's \n\
                 test_object_detection_function() routine.  Therefore, see the documentation \n\
                 for test_object_detection_function() for a detailed definition of these \n\
                 metrics. "
    );
358
    {
Patrick Snape's avatar
Patrick Snape committed
359
    typedef simple_object_detector type;
360
361
362
363
364
365
366
367
368
    class_<type>("simple_object_detector", 
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
        .def("__init__", make_constructor(&load_object_from_file<type>),  
"Loads a simple_object_detector from a file that contains the output of the \n\
train_simple_object_detector() routine." 
            /*!
                Loads a simple_object_detector from a file that contains the output of the
                train_simple_object_detector() routine.
            !*/)
Patrick Snape's avatar
Patrick Snape committed
369
        .def("__call__", run_detector_with_upscale, (arg("image"), arg("upsample_num_times")=0),
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
      detector.  If you don't know how many times you want to upsample then \n\
      don't provide a value for upsample_num_times and an appropriate \n\
      default will be used." 
            /*!
                requires
                    - image is a numpy ndarray containing either an 8bit grayscale or RGB
                      image.
                    - upsample_num_times >= 0
                ensures
                    - This function runs the object detector on the input image and returns
                      a list of detections.  
                    - Upsamples the image upsample_num_times before running the basic
                      detector.  If you don't know how many times you want to upsample then
                      don't provide a value for upsample_num_times and an appropriate
                      default will be used.
            !*/
            )
395
        .def("save", save_simple_object_detector, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.")
396
397
        .def_pickle(serialize_pickle<type>());
    }
398
399
400
401
402
403
404
405
406
407
408
409
410
    {
    typedef std::vector<rectangle> type;
    class_<type>("rectangles", "An array of rectangle objects.")
        .def(vector_indexing_suite<type>())
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def_pickle(serialize_pickle<type>());
    }
}

// ----------------------------------------------------------------------------------------