object_detection.cpp 14.3 KB
Newer Older
1
2
3
4
5
6
7
8
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
9
#include "indexing.h"
Patrick Snape's avatar
Patrick Snape committed
10
#include "simple_object_detector.h"
Patrick Snape's avatar
Patrick Snape committed
11
#include "conversion.h"
12
13
14
15
16
17
18

using namespace dlib;
using namespace std;
using namespace boost::python;

// ----------------------------------------------------------------------------------------

Patrick Snape's avatar
Patrick Snape committed
19
20
21
22
23
24
25
26
27
string print_simple_test_results(const simple_test_results& r)
{
    std::ostringstream sout;
    sout << "precision: "<<r.precision << ", recall: "<< r.recall << ", average precision: " << r.average_precision;
    return sout.str();
}

// ----------------------------------------------------------------------------------------

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
long left(const rectangle& r) { return r.left(); }
long top(const rectangle& r) { return r.top(); }
long right(const rectangle& r) { return r.right(); }
long bottom(const rectangle& r) { return r.bottom(); }
long width(const rectangle& r) { return r.width(); }
long height(const rectangle& r) { return r.height(); }

string print_rectangle_str(const rectangle& r)
{
    std::ostringstream sout;
    sout << r;
    return sout.str();
}

string print_rectangle_repr(const rectangle& r)
{
    std::ostringstream sout;
    sout << "rectangle(" << r.left() << "," << r.top() << "," << r.right() << "," << r.bottom() << ")";
    return sout.str();
}

// ----------------------------------------------------------------------------------------

Patrick Snape's avatar
Patrick Snape committed
51
52
std::vector<rectangle> run_detector_with_upscale (
    simple_object_detector& detector,
53
54
55
56
57
58
59
60
    object img,
    const unsigned int upsampling_amount
)
{
    pyramid_down<2> pyr;

    if (is_gray_python_image(img))
    {
61
        array2d<unsigned char> temp;
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        if (upsampling_amount == 0)
        {
            return detector(numpy_gray_image(img));
        }
        else
        {
            pyramid_up(numpy_gray_image(img), temp, pyr);
            unsigned int levels = upsampling_amount-1;
            while (levels > 0)
            {
                levels--;
                pyramid_up(temp);
            }

            std::vector<rectangle> res = detector(temp);
            for (unsigned long i = 0; i < res.size(); ++i)
                res[i] = pyr.rect_down(res[i], upsampling_amount);
            return res;
        }
    }
    else if (is_rgb_python_image(img))
    {
84
        array2d<rgb_pixel> temp;
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        if (upsampling_amount == 0)
        {
            return detector(numpy_rgb_image(img));
        }
        else
        {
            pyramid_up(numpy_rgb_image(img), temp, pyr);
            unsigned int levels = upsampling_amount-1;
            while (levels > 0)
            {
                levels--;
                pyramid_up(temp);
            }

            std::vector<rectangle> res = detector(temp);
            for (unsigned long i = 0; i < res.size(); ++i)
                res[i] = pyr.rect_down(res[i], upsampling_amount);
            return res;
        }
    }
    else
    {
        throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
    }
}

111
112
113
114
115
116
117
118
void save_simple_object_detector(const simple_object_detector& detector, const std::string& detector_output_filename)
{
    std::ofstream fout(detector_output_filename.c_str(), std::ios::binary);
    int version = 1;
    serialize(detector, fout);
    serialize(version, fout);
}

119
120
// ----------------------------------------------------------------------------------------

121
122
123
124
inline simple_object_detector train_simple_object_detector_on_images_py (
    const boost::python::list& pyimages,
    const boost::python::list& pyboxes,
    const simple_object_detector_training_options& options
125
126
127
128
129
130
131
132
133
)
{
    const unsigned long num_images = len(pyimages);
    if (num_images != len(pyboxes))
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
    std::vector<std::vector<rectangle> > ignore(num_images), boxes(num_images);
    dlib::array<array2d<rgb_pixel> > images(num_images);
Patrick Snape's avatar
Patrick Snape committed
134
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
135

136
    return train_simple_object_detector_on_images("", images, boxes, ignore, options);
137
138
}

139
inline simple_test_results test_simple_object_detector_with_images_py (
140
141
142
143
        const boost::python::list& pyimages,
        const boost::python::list& pyboxes,
        simple_object_detector& detector,
        const unsigned int unsample_amount
144
145
146
147
148
149
150
151
152
)
{
    const unsigned long num_images = len(pyimages);
    if (num_images != len(pyboxes))
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
    std::vector<std::vector<rectangle> > ignore(num_images), boxes(num_images);
    dlib::array<array2d<rgb_pixel> > images(num_images);
Patrick Snape's avatar
Patrick Snape committed
153
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
154

155
    return test_simple_object_detector_with_images(images, unsample_amount, boxes, ignore, detector);
156
157
}

158
159
160
161
162
163
// ----------------------------------------------------------------------------------------

void bind_object_detection()
{
    using boost::python::arg;

Davis King's avatar
Davis King committed
164
165
    class_<simple_object_detector_training_options>("simple_object_detector_training_options", 
        "This object is a container for the options to the train_simple_object_detector() routine.")
166
        .add_property("be_verbose", &simple_object_detector_training_options::be_verbose, 
Davis King's avatar
Davis King committed
167
                                    &simple_object_detector_training_options::be_verbose,
168
"If true, train_simple_object_detector() will print out a lot of information to the screen while training.")
169
        .add_property("add_left_right_image_flips", &simple_object_detector_training_options::add_left_right_image_flips, 
Davis King's avatar
Davis King committed
170
171
172
                                                    &simple_object_detector_training_options::add_left_right_image_flips,
"if true, train_simple_object_detector() will assume the objects are \n\
left/right symmetric and add in left right flips of the training \n\
173
images.  This doubles the size of the training dataset.")
174
        .add_property("detection_window_size", &simple_object_detector_training_options::detection_window_size,
Davis King's avatar
Davis King committed
175
176
                                               &simple_object_detector_training_options::detection_window_size,
                                               "The sliding window used will have about this many pixels inside it.")
177
        .add_property("C", &simple_object_detector_training_options::C,
Davis King's avatar
Davis King committed
178
179
180
181
182
                           &simple_object_detector_training_options::C,
"C is the usual SVM C regularization parameter.  So it is passed to \n\
structural_object_detection_trainer::set_c().  Larger values of C \n\
will encourage the trainer to fit the data better but might lead to \n\
overfitting.  Therefore, you must determine the proper setting of \n\
183
this parameter experimentally.")
184
185
186
        .add_property("epsilon", &simple_object_detector_training_options::epsilon,
                                 &simple_object_detector_training_options::epsilon,
"epsilon is the stopping epsilon.  Smaller values make the trainer's \n\
187
solver more accurate but might take longer to train.")
188
        .add_property("num_threads", &simple_object_detector_training_options::num_threads,
Davis King's avatar
Davis King committed
189
190
191
                                     &simple_object_detector_training_options::num_threads,
"train_simple_object_detector() will use this many threads of \n\
execution.  Set this to the number of CPU cores on your machine to \n\
192
obtain the fastest training speed.");
193
194
195
196
197
198

    class_<simple_test_results>("simple_test_results")
        .add_property("precision", &simple_test_results::precision)
        .add_property("recall", &simple_test_results::recall)
        .add_property("average_precision", &simple_test_results::average_precision)
        .def("__str__", &::print_simple_test_results);
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    {
    typedef rectangle type;
    class_<type>("rectangle", "This object represents a rectangular area of an image.")
        .def(init<long,long,long,long>( (arg("left"),arg("top"),arg("right"),arg("bottom")) ))
        .def("left",   &::left)
        .def("top",    &::top)
        .def("right",  &::right)
        .def("bottom", &::bottom)
        .def("width",  &::width)
        .def("height", &::height)
        .def("__str__", &::print_rectangle_str)
        .def("__repr__", &::print_rectangle_repr)
        .def_pickle(serialize_pickle<type>());
    }

    def("get_frontal_face_detector", get_frontal_face_detector, 
        "Returns the default face detector");

217
    def("train_simple_object_detector", train_simple_object_detector,
218
219
220
221
222
223
224
225
226
227
228
229
        (arg("dataset_filename"), arg("detector_output_filename"), arg("options")),
"requires \n\
    - options.C > 0 \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images in the XML file \n\
      dataset_filename.  This function assumes the file dataset_filename is in the \n\
      XML format produced by dlib's save_image_dataset_metadata() routine. \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
230
    - The trained object detector is serialized to the file detector_output_filename.");
231
232

    def("train_simple_object_detector", train_simple_object_detector_on_images_py,
233
        (arg("images"), arg("boxes"), arg("options")),
234
235
236
237
238
239
240
241
242
243
244
245
"requires \n\
    - options.C > 0 \n\
    - len(images) == len(boxes) \n\
    - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
    - boxes should be a list of lists of dlib.rectangle object. \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images and bounding boxes.  \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
246
    - The trained object detector is returned.");
247
248

    def("test_simple_object_detector", test_simple_object_detector,
249
250
251
252
            (arg("dataset_filename"), arg("detector_filename"), arg("upsample_amount")=0),
            "requires \n\
                - Optionally, take the number of times to upsample the testing images. \n\
             ensures \n\
253
254
255
256
257
258
259
260
261
262
263
                - Loads an image dataset from dataset_filename.  We assume dataset_filename is \n\
                  a file using the XML format written by save_image_dataset_metadata(). \n\
                - Loads a simple_object_detector from the file detector_filename.  This means \n\
                  detector_filename should be a file produced by the train_simple_object_detector()  \n\
                  routine. \n\
                - This function tests the detector against the dataset and returns the \n\
                  precision, recall, and average precision of the detector.  In fact, The \n\
                  return value of this function is identical to that of dlib's \n\
                  test_object_detection_function() routine.  Therefore, see the documentation \n\
                  for test_object_detection_function() for a detailed definition of these \n\
                  metrics. "
264
        );
265

266
    def("test_simple_object_detector", test_simple_object_detector_with_images_py,
267
            (arg("images"), arg("boxes"), arg("detector"), arg("upsample_amount")=0),
268
269
270
271
            "requires \n\
               - len(images) == len(boxes) \n\
               - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
               - boxes should be a list of lists of dlib.rectangle object. \n\
272
               - Optionally, take the number of times to upsample the testing images. \n\
273
274
275
276
277
278
279
280
281
282
283
             ensures \n\
               - Loads a simple_object_detector from the file detector_filename.  This means \n\
                 detector_filename should be a file produced by the train_simple_object_detector() \n\
                 routine. \n\
               - This function tests the detector against the dataset and returns the \n\
                 precision, recall, and average precision of the detector.  In fact, The \n\
                 return value of this function is identical to that of dlib's \n\
                 test_object_detection_function() routine.  Therefore, see the documentation \n\
                 for test_object_detection_function() for a detailed definition of these \n\
                 metrics. "
    );
284
    {
Patrick Snape's avatar
Patrick Snape committed
285
    typedef simple_object_detector type;
286
287
288
289
    class_<type>("simple_object_detector", 
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
        .def("__init__", make_constructor(&load_object_from_file<type>),  
"Loads a simple_object_detector from a file that contains the output of the \n\
290
train_simple_object_detector() routine.")
Patrick Snape's avatar
Patrick Snape committed
291
        .def("__call__", run_detector_with_upscale, (arg("image"), arg("upsample_num_times")=0),
292
293
294
295
296
297
298
299
300
301
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
      detector.  If you don't know how many times you want to upsample then \n\
      don't provide a value for upsample_num_times and an appropriate \n\
302
      default will be used.")
303
        .def("save", save_simple_object_detector, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.")
304
305
        .def_pickle(serialize_pickle<type>());
    }
306
307
308
309
310
311
312
313
314
315
316
    {
    typedef std::vector<rectangle> type;
    class_<type>("rectangles", "An array of rectangle objects.")
        .def(vector_indexing_suite<type>())
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def_pickle(serialize_pickle<type>());
    }
}

// ----------------------------------------------------------------------------------------