"src/git@developer.sourcefind.cn:OpenDAS/dgl.git" did not exist on "168794cdbcc3858f26fea48437a4dee6f8fe5ee5"
object_detection.cpp 20 KB
Newer Older
1
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
2
3
4
5
6
7
8
// License: Boost Software License   See LICENSE.txt for the full license.

#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
Patrick Snape's avatar
Patrick Snape committed
9
#include "simple_object_detector.h"
10
#include "simple_object_detector_py.h"
Patrick Snape's avatar
Patrick Snape committed
11
#include "conversion.h"
12
13
14
15
16
17
18

using namespace dlib;
using namespace std;
using namespace boost::python;

// ----------------------------------------------------------------------------------------

Patrick Snape's avatar
Patrick Snape committed
19
20
21
22
23
24
25
26
27
string print_simple_test_results(const simple_test_results& r)
{
    std::ostringstream sout;
    sout << "precision: "<<r.precision << ", recall: "<< r.recall << ", average precision: " << r.average_precision;
    return sout.str();
}

// ----------------------------------------------------------------------------------------

28
inline simple_object_detector_py train_simple_object_detector_on_images_py (
29
30
31
    const boost::python::list& pyimages,
    const boost::python::list& pyboxes,
    const simple_object_detector_training_options& options
32
33
34
35
36
37
38
39
40
)
{
    const unsigned long num_images = len(pyimages);
    if (num_images != len(pyboxes))
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
    std::vector<std::vector<rectangle> > ignore(num_images), boxes(num_images);
    dlib::array<array2d<rgb_pixel> > images(num_images);
Patrick Snape's avatar
Patrick Snape committed
41
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
42

43
    return train_simple_object_detector_on_images("", images, boxes, ignore, options);
44
45
}

46
inline simple_test_results test_simple_object_detector_with_images_py (
47
48
49
        const boost::python::list& pyimages,
        const boost::python::list& pyboxes,
        simple_object_detector& detector,
50
        const unsigned int upsampling_amount
51
52
53
54
55
56
57
58
59
)
{
    const unsigned long num_images = len(pyimages);
    if (num_images != len(pyboxes))
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
    std::vector<std::vector<rectangle> > ignore(num_images), boxes(num_images);
    dlib::array<array2d<rgb_pixel> > images(num_images);
Patrick Snape's avatar
Patrick Snape committed
60
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    return test_simple_object_detector_with_images(images, upsampling_amount, boxes, ignore, detector);
}

// ----------------------------------------------------------------------------------------

inline simple_test_results test_simple_object_detector_py_with_images_py (
        const boost::python::list& pyimages,
        const boost::python::list& pyboxes,
        simple_object_detector_py& detector,
        const int upsampling_amount
)
{
    // Allow users to pass an upsampling amount ELSE use the one cached on the object
    // Anything less than 0 is ignored and the cached value is used.
    unsigned int final_upsampling_amount = 0;
    if (upsampling_amount >= 0)
        final_upsampling_amount = upsampling_amount;
    else
        final_upsampling_amount = detector.upsampling_amount;

    return test_simple_object_detector_with_images_py(pyimages, pyboxes, detector.detector, final_upsampling_amount);
83
84
}

85
86
// ----------------------------------------------------------------------------------------

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
inline void find_candidate_object_locations_py (
    object pyimage,
    boost::python::list& pyboxes,
    boost::python::tuple pykvals,
    unsigned long min_size,
    unsigned long max_merging_iterations
)
{
    // Copy the data into dlib based objects
    array2d<rgb_pixel> image;
    if (is_gray_python_image(pyimage))
        assign_image(image, numpy_gray_image(pyimage));
    else if (is_rgb_python_image(pyimage))
        assign_image(image, numpy_rgb_image(pyimage));
    else
        throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");

    if (boost::python::len(pykvals) != 3)
        throw dlib::error("kvals must be a tuple with three elements for start, end, num.");

    double start = extract<double>(pykvals[0]);
    double end   = extract<double>(pykvals[1]);
    long num     = extract<long>(pykvals[2]);
    matrix_range_exp<double> kvals = linspace(start, end, num);

    std::vector<rectangle> rects;
113
114
115
116
117
118
    const long count = len(pyboxes);
    // Copy any rectangles in the input pyboxes into rects so that any rectangles will be
    // properly deduped in the resulting output.
    for (long i = 0; i < count; ++i)
        rects.push_back(extract<rectangle>(pyboxes[i]));
    // Find candidate objects
119
120
121
122
123
124
125
126
127
128
    find_candidate_object_locations(image, rects, kvals, min_size, max_merging_iterations);

    // Collect boxes containing candidate objects
    std::vector<rectangle>::iterator iter;
    for (iter = rects.begin(); iter != rects.end(); ++iter)
        pyboxes.append(*iter);
}

// ----------------------------------------------------------------------------------------

129
130
131
void bind_object_detection()
{
    using boost::python::arg;
132
133
134
    {
    typedef simple_object_detector_training_options type;
    class_<type>("simple_object_detector_training_options",
Davis King's avatar
Davis King committed
135
        "This object is a container for the options to the train_simple_object_detector() routine.")
136
137
        .add_property("be_verbose", &type::be_verbose,
                                    &type::be_verbose,
138
"If true, train_simple_object_detector() will print out a lot of information to the screen while training.")
139
140
        .add_property("add_left_right_image_flips", &type::add_left_right_image_flips,
                                                    &type::add_left_right_image_flips,
Davis King's avatar
Davis King committed
141
142
"if true, train_simple_object_detector() will assume the objects are \n\
left/right symmetric and add in left right flips of the training \n\
143
images.  This doubles the size of the training dataset.")
144
145
        .add_property("detection_window_size", &type::detection_window_size,
                                               &type::detection_window_size,
Davis King's avatar
Davis King committed
146
                                               "The sliding window used will have about this many pixels inside it.")
147
148
        .add_property("C", &type::C,
                           &type::C,
Davis King's avatar
Davis King committed
149
150
151
152
"C is the usual SVM C regularization parameter.  So it is passed to \n\
structural_object_detection_trainer::set_c().  Larger values of C \n\
will encourage the trainer to fit the data better but might lead to \n\
overfitting.  Therefore, you must determine the proper setting of \n\
153
this parameter experimentally.")
154
155
        .add_property("epsilon", &type::epsilon,
                                 &type::epsilon,
156
"epsilon is the stopping epsilon.  Smaller values make the trainer's \n\
157
solver more accurate but might take longer to train.")
158
159
        .add_property("num_threads", &type::num_threads,
                                     &type::num_threads,
Davis King's avatar
Davis King committed
160
161
"train_simple_object_detector() will use this many threads of \n\
execution.  Set this to the number of CPU cores on your machine to \n\
162
163
164
165
166
167
168
169
170
obtain the fastest training speed.")
        .add_property("upsample_limit", &type::upsample_limit,
                                        &type::upsample_limit,
"train_simple_object_detector() will upsample images if needed \n\
no more than upsample_limit times. Value 0 will forbid trainer to \n\
upsample any images. If trainer is unable to fit all boxes with \n\
required upsample_limit, exception will be thrown. Higher values \n\
of upsample_limit exponentially increases memory requiremens. \n\
Values higher than 2 (default) are not recommended.");
171
    }
172
    {
173
174
175
176
177
178
    typedef simple_test_results type;
    class_<type>("simple_test_results")
        .add_property("precision", &type::precision)
        .add_property("recall", &type::recall)
        .add_property("average_precision", &type::average_precision)
        .def("__str__", &::print_simple_test_results);
179
180
    }

181
    // Here, kvals is actually the result of linspace(start, end, num) and it is different from kvals used
182
    // in find_candidate_object_locations(). See dlib/image_transforms/segment_image_abstract.h for more details.
183
    def("find_candidate_object_locations", find_candidate_object_locations_py,
184
            (arg("image"), arg("rects"), arg("kvals")=boost::python::make_tuple(50, 200, 3),
185
186
187
188
             arg("min_size")=20, arg("max_merging_iterations")=50),
"Returns found candidate objects\n\
requires\n\
    - image == an image object which is a numpy ndarray\n\
189
190
191
    - len(kvals) == 3\n\
    - kvals should be a tuple that specifies the range of k values to use.  In\n\
      particular, it should take the form (start, end, num) where num > 0. \n\
192
193
194
195
196
197
198
199
200
201
ensures\n\
    - This function takes an input image and generates a set of candidate\n\
      rectangles which are expected to bound any objects in the image.  It does\n\
      this by running a version of the segment_image() routine on the image and\n\
      then reports rectangles containing each of the segments as well as rectangles\n\
      containing unions of adjacent segments.  The basic idea is described in the\n\
      paper: \n\
          Segmentation as Selective Search for Object Recognition by Koen E. A. van de Sande, et al.\n\
      Note that this function deviates from what is described in the paper slightly. \n\
      See the code for details.\n\
202
203
204
    - The basic segmentation is performed kvals[2] times, each time with the k parameter\n\
      (see segment_image() and the Felzenszwalb paper for details on k) set to a different\n\
      value from the range of numbers linearly spaced between kvals[0] to kvals[1].\n\
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    - When doing the basic segmentations prior to any box merging, we discard all\n\
      rectangles that have an area < min_size.  Therefore, all outputs and\n\
      subsequent merged rectangles are built out of rectangles that contain at\n\
      least min_size pixels.  Note that setting min_size to a smaller value than\n\
      you might otherwise be interested in using can be useful since it allows a\n\
      larger number of possible merged boxes to be created.\n\
    - There are max_merging_iterations rounds of neighboring blob merging.\n\
      Therefore, this parameter has some effect on the number of output rectangles\n\
      you get, with larger values of the parameter giving more output rectangles.\n\
    - This function appends the output rectangles into #rects.  This means that any\n\
      rectangles in rects before this function was called will still be in there\n\
      after it terminates.  Note further that #rects will not contain any duplicate\n\
      rectangles.  That is, for all valid i and j where i != j it will be true\n\
      that:\n\
        - #rects[i] != rects[j]");

    def("get_frontal_face_detector", get_frontal_face_detector,
222
223
        "Returns the default face detector");

224
    def("train_simple_object_detector", train_simple_object_detector,
225
226
227
228
229
230
231
232
233
234
235
236
        (arg("dataset_filename"), arg("detector_output_filename"), arg("options")),
"requires \n\
    - options.C > 0 \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images in the XML file \n\
      dataset_filename.  This function assumes the file dataset_filename is in the \n\
      XML format produced by dlib's save_image_dataset_metadata() routine. \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
237
    - The trained object detector is serialized to the file detector_output_filename.");
238
239

    def("train_simple_object_detector", train_simple_object_detector_on_images_py,
240
        (arg("images"), arg("boxes"), arg("options")),
241
242
243
244
245
246
247
248
249
250
251
252
"requires \n\
    - options.C > 0 \n\
    - len(images) == len(boxes) \n\
    - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
    - boxes should be a list of lists of dlib.rectangle object. \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images and bounding boxes.  \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
253
    - The trained object detector is returned.");
254
255

    def("test_simple_object_detector", test_simple_object_detector,
256
257
            // Please see test_simple_object_detector for the reason upsampling_amount is -1
            (arg("dataset_filename"), arg("detector_filename"), arg("upsampling_amount")=-1),
258
            "requires \n\
259
                - Optionally, take the number of times to upsample the testing images (upsampling_amount >= 0). \n\
260
             ensures \n\
261
262
263
264
265
266
267
268
269
270
271
                - Loads an image dataset from dataset_filename.  We assume dataset_filename is \n\
                  a file using the XML format written by save_image_dataset_metadata(). \n\
                - Loads a simple_object_detector from the file detector_filename.  This means \n\
                  detector_filename should be a file produced by the train_simple_object_detector()  \n\
                  routine. \n\
                - This function tests the detector against the dataset and returns the \n\
                  precision, recall, and average precision of the detector.  In fact, The \n\
                  return value of this function is identical to that of dlib's \n\
                  test_object_detection_function() routine.  Therefore, see the documentation \n\
                  for test_object_detection_function() for a detailed definition of these \n\
                  metrics. "
272
        );
273

274
    def("test_simple_object_detector", test_simple_object_detector_with_images_py,
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
            (arg("images"), arg("boxes"), arg("detector"), arg("upsampling_amount")=0),
            "requires \n\
               - len(images) == len(boxes) \n\
               - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
               - boxes should be a list of lists of dlib.rectangle object. \n\
               - Optionally, take the number of times to upsample the testing images (upsampling_amount >= 0). \n\
             ensures \n\
               - Loads a simple_object_detector from the file detector_filename.  This means \n\
                 detector_filename should be a file produced by the train_simple_object_detector() \n\
                 routine. \n\
               - This function tests the detector against the dataset and returns the \n\
                 precision, recall, and average precision of the detector.  In fact, The \n\
                 return value of this function is identical to that of dlib's \n\
                 test_object_detection_function() routine.  Therefore, see the documentation \n\
                 for test_object_detection_function() for a detailed definition of these \n\
                 metrics. "
    );

    def("test_simple_object_detector", test_simple_object_detector_py_with_images_py,
            // Please see test_simple_object_detector_py_with_images_py for the reason upsampling_amount is -1
            (arg("images"), arg("boxes"), arg("detector"), arg("upsampling_amount")=-1),
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
            "requires \n\
               - len(images) == len(boxes) \n\
               - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
               - boxes should be a list of lists of dlib.rectangle object. \n\
             ensures \n\
               - Loads a simple_object_detector from the file detector_filename.  This means \n\
                 detector_filename should be a file produced by the train_simple_object_detector() \n\
                 routine. \n\
               - This function tests the detector against the dataset and returns the \n\
                 precision, recall, and average precision of the detector.  In fact, The \n\
                 return value of this function is identical to that of dlib's \n\
                 test_object_detection_function() routine.  Therefore, see the documentation \n\
                 for test_object_detection_function() for a detailed definition of these \n\
                 metrics. "
    );
311
    {
Patrick Snape's avatar
Patrick Snape committed
312
    typedef simple_object_detector type;
313
    class_<type>("fhog_object_detector",
314
315
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
        .def("__init__", make_constructor(&load_object_from_file<type>),  
316
317
318
"Loads an object detector from a file that contains the output of the \n\
train_simple_object_detector() routine or a serialized C++ object of type\n\
object_detector<scan_fhog_pyramid<pyramid_down<6>>>.")
Jack Culpepper's avatar
Jack Culpepper committed
319
        .def("__call__", run_detector_with_upscale2, (arg("image"), arg("upsample_num_times")=0),
320
321
322
323
324
325
326
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
327
    - Upsamples the image upsample_num_times before running the basic \n\
Davis King's avatar
Davis King committed
328
      detector.")
329
        .def("run", run_rect_detector, (arg("image"), arg("upsample_num_times")=0, arg("adjust_threshold")=0.0),
330
331
332
333
334
335
336
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a tuple of (list of detections, list of scores, list of weight_indices).   \n\
337
    - Upsamples the image upsample_num_times before running the basic \n\
Davis King's avatar
Davis King committed
338
      detector.")
339
340
341
342
343
344
345
346
347
348
        .def("run_multiple", run_multiple_rect_detectors,(arg("detectors"),  arg("image"), arg("upsample_num_times")=0, arg("adjust_threshold")=0.0),
"requires \n\
    - detectors is a list of detectors. \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the list of object detectors at once on the input image and returns \n\
      a tuple of (list of detections, list of scores, list of weight_indices).   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
Davis King's avatar
Davis King committed
349
      detector.")
350
        .staticmethod("run_multiple")
351
        .def("save", save_simple_object_detector, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.")
352
353
        .def_pickle(serialize_pickle<type>());
    }
354
    {
355
356
357
358
359
360
    typedef simple_object_detector_py type;
    class_<type>("simple_object_detector",
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
        .def("__init__", make_constructor(&load_object_from_file<type>),
"Loads a simple_object_detector from a file that contains the output of the \n\
train_simple_object_detector() routine.")
361
        .def("__call__", &type::run_detector1, (arg("image"), arg("upsample_num_times"), arg("adjust_threshold")=0.0),
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
      detector.  If you don't know how many times you want to upsample then \n\
      don't provide a value for upsample_num_times and an appropriate \n\
      default will be used.")
        .def("__call__", &type::run_detector2, (arg("image")),
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.")
        .def("save", save_simple_object_detector_py, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.")
        .def_pickle(serialize_pickle<type>());
    }
383
384
385
}

// ----------------------------------------------------------------------------------------