object_detection.cpp 25.6 KB
Newer Older
1
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
2
3
// License: Boost Software License   See LICENSE.txt for the full license.

Davis King's avatar
Davis King committed
4
#include "opaque_types.h"
5
6
7
8
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
Patrick Snape's avatar
Patrick Snape committed
9
#include "simple_object_detector.h"
10
#include "simple_object_detector_py.h"
Patrick Snape's avatar
Patrick Snape committed
11
#include "conversion.h"
12
13
14

using namespace dlib;
using namespace std;
15
16

namespace py = pybind11;
17
18
19

// ----------------------------------------------------------------------------------------

Patrick Snape's avatar
Patrick Snape committed
20
21
22
23
24
25
26
27
28
string print_simple_test_results(const simple_test_results& r)
{
    std::ostringstream sout;
    sout << "precision: "<<r.precision << ", recall: "<< r.recall << ", average precision: " << r.average_precision;
    return sout.str();
}

// ----------------------------------------------------------------------------------------

29
inline simple_object_detector_py train_simple_object_detector_on_images_py (
30
31
    const py::list& pyimages,
    const py::list& pyboxes,
32
    const simple_object_detector_training_options& options
33
34
)
{
35
36
    const unsigned long num_images = py::len(pyimages);
    if (num_images != py::len(pyboxes))
37
38
39
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
40
41
    std::vector<std::vector<rectangle>> ignore(num_images), boxes(num_images);
    dlib::array<numpy_image<rgb_pixel>> images(num_images);
Patrick Snape's avatar
Patrick Snape committed
42
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
43

44
    return train_simple_object_detector_on_images("", images, boxes, ignore, options);
45
46
}

47
inline simple_test_results test_simple_object_detector_with_images_py (
48
49
        const py::list& pyimages,
        const py::list& pyboxes,
50
        simple_object_detector& detector,
51
        const unsigned int upsampling_amount
52
53
)
{
54
55
    const unsigned long num_images = py::len(pyimages);
    if (num_images != py::len(pyboxes))
56
57
58
        throw dlib::error("The length of the boxes list must match the length of the images list.");

    // We never have any ignore boxes for this version of the API.
59
60
    std::vector<std::vector<rectangle>> ignore(num_images), boxes(num_images);
    dlib::array<numpy_image<rgb_pixel>> images(num_images);
Patrick Snape's avatar
Patrick Snape committed
61
    images_and_nested_params_to_dlib(pyimages, pyboxes, images, boxes);
62

63
64
65
66
67
68
    return test_simple_object_detector_with_images(images, upsampling_amount, boxes, ignore, detector);
}

// ----------------------------------------------------------------------------------------

inline simple_test_results test_simple_object_detector_py_with_images_py (
69
70
        const py::list& pyimages,
        const py::list& pyboxes,
71
72
73
74
75
76
77
78
79
80
81
82
83
        simple_object_detector_py& detector,
        const int upsampling_amount
)
{
    // Allow users to pass an upsampling amount ELSE use the one cached on the object
    // Anything less than 0 is ignored and the cached value is used.
    unsigned int final_upsampling_amount = 0;
    if (upsampling_amount >= 0)
        final_upsampling_amount = upsampling_amount;
    else
        final_upsampling_amount = detector.upsampling_amount;

    return test_simple_object_detector_with_images_py(pyimages, pyboxes, detector.detector, final_upsampling_amount);
84
85
}

86
87
// ----------------------------------------------------------------------------------------

88
inline void find_candidate_object_locations_py (
89
    py::array pyimage,
90
91
    py::list& pyboxes,
    py::tuple pykvals,
92
93
94
95
    unsigned long min_size,
    unsigned long max_merging_iterations
)
{
96
    if (py::len(pykvals) != 3)
97
98
        throw dlib::error("kvals must be a tuple with three elements for start, end, num.");

99
100
101
    double start = pykvals[0].cast<double>();
    double end   = pykvals[1].cast<double>();
    long num     = pykvals[2].cast<long>();
102
103
104
    matrix_range_exp<double> kvals = linspace(start, end, num);

    std::vector<rectangle> rects;
105
    const long count = py::len(pyboxes);
106
107
108
    // Copy any rectangles in the input pyboxes into rects so that any rectangles will be
    // properly deduped in the resulting output.
    for (long i = 0; i < count; ++i)
109
        rects.push_back(pyboxes[i].cast<rectangle>());
110
    // Find candidate objects
111
112
113
114
115
116
    if (is_image<unsigned char>(pyimage))
        find_candidate_object_locations(numpy_image<unsigned char>(pyimage), rects, kvals, min_size, max_merging_iterations);
    else if (is_image<rgb_pixel>(pyimage))
        find_candidate_object_locations(numpy_image<rgb_pixel>(pyimage), rects, kvals, min_size, max_merging_iterations);
    else
        throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
117
118
119
120
121
122
123
124
125

    // Collect boxes containing candidate objects
    std::vector<rectangle>::iterator iter;
    for (iter = rects.begin(); iter != rects.end(); ++iter)
        pyboxes.append(*iter);
}

// ----------------------------------------------------------------------------------------

126
void bind_object_detection(py::module& m)
127
{
128
129
    {
    typedef simple_object_detector_training_options type;
130
    py::class_<type>(m, "simple_object_detector_training_options",
Davis King's avatar
Davis King committed
131
        "This object is a container for the options to the train_simple_object_detector() routine.")
132
        .def(py::init())
133
134
        .def("__str__", &::print_simple_object_detector_training_options)
        .def("__repr__", &::print_simple_object_detector_training_options)
135
        .def_readwrite("be_verbose", &type::be_verbose,
136
"If true, train_simple_object_detector() will print out a lot of information to the screen while training.")
137
        .def_readwrite("add_left_right_image_flips", &type::add_left_right_image_flips,
Davis King's avatar
Davis King committed
138
139
"if true, train_simple_object_detector() will assume the objects are \n\
left/right symmetric and add in left right flips of the training \n\
140
images.  This doubles the size of the training dataset.")
141
        .def_readwrite("detection_window_size", &type::detection_window_size,
Davis King's avatar
Davis King committed
142
                                               "The sliding window used will have about this many pixels inside it.")
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        .def_readwrite("nuclear_norm_regularization_strength", &type::nuclear_norm_regularization_strength,
"This detector works by convolving a filter over a HOG feature image.  If that \n\
filter is separable then the convolution can be performed much faster.  The \n\
nuclear_norm_regularization_strength parameter encourages the machine learning \n\
algorithm to learn a separable filter.  A value of 0 disables this feature, but \n\
any non-zero value places a nuclear norm regularizer on the objective function \n\
and this encourages the learning of a separable filter.  Note that setting \n\
nuclear_norm_regularization_strength to a non-zero value can make the training \n\
process take significantly longer, so be patient when using it." 
            /*!
            This detector works by convolving a filter over a HOG feature image.  If that
            filter is separable then the convolution can be performed much faster.  The
            nuclear_norm_regularization_strength parameter encourages the machine learning
            algorithm to learn a separable filter.  A value of 0 disables this feature, but
            any non-zero value places a nuclear norm regularizer on the objective function
            and this encourages the learning of a separable filter.  Note that setting
            nuclear_norm_regularization_strength to a non-zero value can make the training
            process take significantly longer, so be patient when using it.
            !*/
                                               )
163
        .def_readwrite("C", &type::C,
Davis King's avatar
Davis King committed
164
165
166
167
"C is the usual SVM C regularization parameter.  So it is passed to \n\
structural_object_detection_trainer::set_c().  Larger values of C \n\
will encourage the trainer to fit the data better but might lead to \n\
overfitting.  Therefore, you must determine the proper setting of \n\
168
this parameter experimentally.")
169
        .def_readwrite("epsilon", &type::epsilon,
170
"epsilon is the stopping epsilon.  Smaller values make the trainer's \n\
171
solver more accurate but might take longer to train.")
172
        .def_readwrite("num_threads", &type::num_threads,
Davis King's avatar
Davis King committed
173
174
"train_simple_object_detector() will use this many threads of \n\
execution.  Set this to the number of CPU cores on your machine to \n\
175
obtain the fastest training speed.")
176
        .def_readwrite("upsample_limit", &type::upsample_limit,
177
178
179
180
"train_simple_object_detector() will upsample images if needed \n\
no more than upsample_limit times. Value 0 will forbid trainer to \n\
upsample any images. If trainer is unable to fit all boxes with \n\
required upsample_limit, exception will be thrown. Higher values \n\
181
of upsample_limit exponentially increases memory requirements. \n\
182
Values higher than 2 (default) are not recommended.");
183
    }
184

185
    {
186
    typedef simple_test_results type;
187
188
189
190
    py::class_<type>(m, "simple_test_results")
        .def_readwrite("precision", &type::precision)
        .def_readwrite("recall", &type::recall)
        .def_readwrite("average_precision", &type::average_precision)
191
192
        .def("__str__", &::print_simple_test_results)
        .def("__repr__", &::print_simple_test_results);
193
194
    }

195
    // Here, kvals is actually the result of linspace(start, end, num) and it is different from kvals used
196
    // in find_candidate_object_locations(). See dlib/image_transforms/segment_image_abstract.h for more details.
197
    m.def("find_candidate_object_locations", find_candidate_object_locations_py, py::arg("image"), py::arg("rects"), py::arg("kvals")=py::make_tuple(50, 200, 3), py::arg("min_size")=20, py::arg("max_merging_iterations")=50,
198
199
200
"Returns found candidate objects\n\
requires\n\
    - image == an image object which is a numpy ndarray\n\
201
202
203
    - len(kvals) == 3\n\
    - kvals should be a tuple that specifies the range of k values to use.  In\n\
      particular, it should take the form (start, end, num) where num > 0. \n\
204
205
206
207
208
209
210
211
212
213
ensures\n\
    - This function takes an input image and generates a set of candidate\n\
      rectangles which are expected to bound any objects in the image.  It does\n\
      this by running a version of the segment_image() routine on the image and\n\
      then reports rectangles containing each of the segments as well as rectangles\n\
      containing unions of adjacent segments.  The basic idea is described in the\n\
      paper: \n\
          Segmentation as Selective Search for Object Recognition by Koen E. A. van de Sande, et al.\n\
      Note that this function deviates from what is described in the paper slightly. \n\
      See the code for details.\n\
214
215
216
    - The basic segmentation is performed kvals[2] times, each time with the k parameter\n\
      (see segment_image() and the Felzenszwalb paper for details on k) set to a different\n\
      value from the range of numbers linearly spaced between kvals[0] to kvals[1].\n\
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    - When doing the basic segmentations prior to any box merging, we discard all\n\
      rectangles that have an area < min_size.  Therefore, all outputs and\n\
      subsequent merged rectangles are built out of rectangles that contain at\n\
      least min_size pixels.  Note that setting min_size to a smaller value than\n\
      you might otherwise be interested in using can be useful since it allows a\n\
      larger number of possible merged boxes to be created.\n\
    - There are max_merging_iterations rounds of neighboring blob merging.\n\
      Therefore, this parameter has some effect on the number of output rectangles\n\
      you get, with larger values of the parameter giving more output rectangles.\n\
    - This function appends the output rectangles into #rects.  This means that any\n\
      rectangles in rects before this function was called will still be in there\n\
      after it terminates.  Note further that #rects will not contain any duplicate\n\
      rectangles.  That is, for all valid i and j where i != j it will be true\n\
      that:\n\
        - #rects[i] != rects[j]");

233
    m.def("get_frontal_face_detector", get_frontal_face_detector,
234
235
        "Returns the default face detector");

236
237
    m.def("train_simple_object_detector", train_simple_object_detector,
        py::arg("dataset_filename"), py::arg("detector_output_filename"), py::arg("options"),
238
239
240
241
242
243
244
245
246
247
248
"requires \n\
    - options.C > 0 \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images in the XML file \n\
      dataset_filename.  This function assumes the file dataset_filename is in the \n\
      XML format produced by dlib's save_image_dataset_metadata() routine. \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
249
    - The trained object detector is serialized to the file detector_output_filename.");
250

251
252
    m.def("train_simple_object_detector", train_simple_object_detector_on_images_py,
        py::arg("images"), py::arg("boxes"), py::arg("options"),
253
254
255
256
257
258
259
260
261
262
263
264
"requires \n\
    - options.C > 0 \n\
    - len(images) == len(boxes) \n\
    - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
    - boxes should be a list of lists of dlib.rectangle object. \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images and bounding boxes.  \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
265
    - The trained object detector is returned.");
266

267
268
    m.def("test_simple_object_detector", test_simple_object_detector,
        py::arg("dataset_filename"), py::arg("detector_filename"), py::arg("upsampling_amount")=-1,
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
            "ensures \n\
                - Loads an image dataset from dataset_filename.  We assume dataset_filename is \n\
                  a file using the XML format written by save_image_dataset_metadata(). \n\
                - Loads a simple_object_detector from the file detector_filename.  This means \n\
                  detector_filename should be a file produced by the train_simple_object_detector()  \n\
                  routine. \n\
                - This function tests the detector against the dataset and returns the \n\
                  precision, recall, and average precision of the detector.  In fact, The \n\
                  return value of this function is identical to that of dlib's \n\
                  test_object_detection_function() routine.  Therefore, see the documentation \n\
                  for test_object_detection_function() for a detailed definition of these \n\
                  metrics. \n\
                - if upsampling_amount>=0 then we upsample the data by upsampling_amount rather than \n\
                  use any upsampling amount that happens to be encoded in the given detector.  If upsampling_amount<0 \n\
                  then we use the upsampling amount the detector wants to use."
        );

    m.def("test_simple_object_detector", test_simple_object_detector2,
        py::arg("dataset_filename"), py::arg("detector"), py::arg("upsampling_amount")=-1,
            "ensures \n\
289
290
291
292
293
294
295
296
297
298
                - Loads an image dataset from dataset_filename.  We assume dataset_filename is \n\
                  a file using the XML format written by save_image_dataset_metadata(). \n\
                - Loads a simple_object_detector from the file detector_filename.  This means \n\
                  detector_filename should be a file produced by the train_simple_object_detector()  \n\
                  routine. \n\
                - This function tests the detector against the dataset and returns the \n\
                  precision, recall, and average precision of the detector.  In fact, The \n\
                  return value of this function is identical to that of dlib's \n\
                  test_object_detection_function() routine.  Therefore, see the documentation \n\
                  for test_object_detection_function() for a detailed definition of these \n\
299
300
301
302
                  metrics. \n\
                - if upsampling_amount>=0 then we upsample the data by upsampling_amount rather than \n\
                  use any upsampling amount that happens to be encoded in the given detector.  If upsampling_amount<0 \n\
                  then we use the upsampling amount the detector wants to use."
303
        );
304

305
306
    m.def("test_simple_object_detector", test_simple_object_detector_with_images_py,
            py::arg("images"), py::arg("boxes"), py::arg("detector"), py::arg("upsampling_amount")=0,
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
            "requires \n\
               - len(images) == len(boxes) \n\
               - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
               - boxes should be a list of lists of dlib.rectangle object. \n\
               - Optionally, take the number of times to upsample the testing images (upsampling_amount >= 0). \n\
             ensures \n\
               - Loads a simple_object_detector from the file detector_filename.  This means \n\
                 detector_filename should be a file produced by the train_simple_object_detector() \n\
                 routine. \n\
               - This function tests the detector against the dataset and returns the \n\
                 precision, recall, and average precision of the detector.  In fact, The \n\
                 return value of this function is identical to that of dlib's \n\
                 test_object_detection_function() routine.  Therefore, see the documentation \n\
                 for test_object_detection_function() for a detailed definition of these \n\
                 metrics. "
    );

324
    m.def("test_simple_object_detector", test_simple_object_detector_py_with_images_py,
325
            // Please see test_simple_object_detector_py_with_images_py for the reason upsampling_amount is -1
326
            py::arg("images"), py::arg("boxes"), py::arg("detector"), py::arg("upsampling_amount")=-1,
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
            "requires \n\
               - len(images) == len(boxes) \n\
               - images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
               - boxes should be a list of lists of dlib.rectangle object. \n\
             ensures \n\
               - Loads a simple_object_detector from the file detector_filename.  This means \n\
                 detector_filename should be a file produced by the train_simple_object_detector() \n\
                 routine. \n\
               - This function tests the detector against the dataset and returns the \n\
                 precision, recall, and average precision of the detector.  In fact, The \n\
                 return value of this function is identical to that of dlib's \n\
                 test_object_detection_function() routine.  Therefore, see the documentation \n\
                 for test_object_detection_function() for a detailed definition of these \n\
                 metrics. "
    );
342
    {
Patrick Snape's avatar
Patrick Snape committed
343
    typedef simple_object_detector type;
344
    py::class_<type, std::shared_ptr<type>>(m, "fhog_object_detector",
345
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
346
        .def(py::init(&load_object_from_file<type>),
347
348
349
"Loads an object detector from a file that contains the output of the \n\
train_simple_object_detector() routine or a serialized C++ object of type\n\
object_detector<scan_fhog_pyramid<pyramid_down<6>>>.")
350
        .def("__call__", run_detector_with_upscale2, py::arg("image"), py::arg("upsample_num_times")=0,
351
352
353
354
355
356
357
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
358
    - Upsamples the image upsample_num_times before running the basic \n\
Davis King's avatar
Davis King committed
359
      detector.")
360
       .def("run", run_rect_detector, py::arg("image"), py::arg("upsample_num_times")=0, py::arg("adjust_threshold")=0.0,
361
362
363
364
365
366
367
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a tuple of (list of detections, list of scores, list of weight_indices).   \n\
368
    - Upsamples the image upsample_num_times before running the basic \n\
Davis King's avatar
Davis King committed
369
      detector.")
370
       .def_static("run_multiple", run_multiple_rect_detectors, py::arg("detectors"),  py::arg("image"), py::arg("upsample_num_times")=0, py::arg("adjust_threshold")=0.0,
371
372
373
374
375
376
377
378
379
"requires \n\
    - detectors is a list of detectors. \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the list of object detectors at once on the input image and returns \n\
      a tuple of (list of detections, list of scores, list of weight_indices).   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
Davis King's avatar
Davis King committed
380
      detector.")
381
382
           .def("save", save_simple_object_detector, py::arg("detector_output_filename"), "Save a simple_object_detector to the provided path.")
           .def(py::pickle(&getstate<type>, &setstate<type>));
383
    }
384
    {
385
    typedef simple_object_detector_py type;
386
    py::class_<type, std::shared_ptr<type>>(m, "simple_object_detector",
387
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
388
        .def(py::init(&load_object_from_file<type>),
389
390
"Loads a simple_object_detector from a file that contains the output of the \n\
train_simple_object_detector() routine.")
391
        .def("__call__", &type::run_detector1, py::arg("image"), py::arg("upsample_num_times"),
392
393
394
395
396
397
398
399
400
401
402
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
      detector.  If you don't know how many times you want to upsample then \n\
      don't provide a value for upsample_num_times and an appropriate \n\
      default will be used.")
403
        .def("__call__", &type::run_detector2, py::arg("image"),
404
405
406
407
408
409
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.")
410
        .def("save", save_simple_object_detector_py, py::arg("detector_output_filename"), "Save a simple_object_detector to the provided path.")
411
        .def_readwrite("upsampling_amount", &type::upsampling_amount, "The detector upsamples the image this many times before running.")
412
413
414
415
416
417
418
419
420
421
422
        .def_static("run_multiple", run_multiple_rect_detectors, py::arg("detectors"),  py::arg("image"), py::arg("upsample_num_times")=0, py::arg("adjust_threshold")=0.0,
"requires \n\
    - detectors is a list of detectors. \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the list of object detectors at once on the input image and returns \n\
      a tuple of (list of detections, list of scores, list of weight_indices).   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
      detector.")
423
        .def(py::pickle(&getstate<type>, &setstate<type>));
424
    }
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463


    m.def("num_separable_filters", [](const simple_object_detector_py& obj) { return num_separable_filters(obj.detector); },
        py::arg("detector"),
        "Returns the number of separable filters necessary to represent the HOG filters in the given detector."
    );

    m.def("threshold_filter_singular_values", [](const simple_object_detector_py& obj, double thresh) {
        auto temp = obj;
        temp.detector = threshold_filter_singular_values(obj.detector, thresh);
        return temp;
    }, py::arg("detector"), py::arg("thresh"),
"requires \n\
    - thresh >= 0 \n\
ensures \n\
    - Removes all components of the filters in the given detector that have \n\
      singular values that are smaller than the given threshold.  Therefore, this \n\
      function allows you to control how many separable filters are in a detector. \n\
      In particular, as thresh gets larger the quantity \n\
      num_separable_filters(threshold_filter_singular_values(detector,thresh)) \n\
      will generally get smaller and therefore give a faster running detector. \n\
      However, note that at some point a large enough thresh will drop too much \n\
      information from the filters and their accuracy will suffer.   \n\
    - returns the updated detector" 
    /*!
        requires
            - thresh >= 0
        ensures
            - Removes all components of the filters in the given detector that have
              singular values that are smaller than the given threshold.  Therefore, this
              function allows you to control how many separable filters are in a detector.
              In particular, as thresh gets larger the quantity
              num_separable_filters(threshold_filter_singular_values(detector,thresh))
              will generally get smaller and therefore give a faster running detector.
              However, note that at some point a large enough thresh will drop too much
              information from the filters and their accuracy will suffer.  
            - returns the updated detector
    !*/
    );
464
465
466
}

// ----------------------------------------------------------------------------------------