test_stable_diffusion_img2img.py 22.6 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from packaging import version
23
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
24
25
26

from diffusers import (
    AutoencoderKL,
27
    DDIMScheduler,
28
    DPMSolverMultistepScheduler,
29
    HeunDiscreteScheduler,
30
31
32
33
34
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    UNet2DConditionModel,
)
YiYi Xu's avatar
YiYi Xu committed
35
from diffusers.image_processor import VaeImageProcessor
36
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
37
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
38

39
40
41
42
43
44
from ..pipeline_params import (
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
45

46
47

torch.backends.cuda.matmul.allow_tf32 = False
48
torch.use_deterministic_algorithms(True)
49
50


51
class StableDiffusionImg2ImgPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
52
    pipeline_class = StableDiffusionImg2ImgPipeline
53
54
55
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
56
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
57

58
    def get_dummy_components(self):
59
        torch.manual_seed(0)
60
        unet = UNet2DConditionModel(
61
62
63
64
65
66
67
68
69
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
70
        scheduler = PNDMScheduler(skip_prk_steps=True)
71
        torch.manual_seed(0)
72
        vae = AutoencoderKL(
73
74
75
76
77
78
79
80
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
81
        text_encoder_config = CLIPTextConfig(
82
83
84
85
86
87
88
89
90
91
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
92
93
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
94

95
96
97
98
99
100
101
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
102
            "feature_extractor": None,
103
104
105
        }
        return components

106
    def get_dummy_inputs(self, device, seed=0):
107
108
109
110
111
112
113
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
114
            "image": image,
115
116
117
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
118
            "output_type": "numpy",
119
120
        }
        return inputs
121

122
    def test_stable_diffusion_img2img_default_case(self):
123
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
124
125
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
126
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=True)
127
128
129
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

130
        inputs = self.get_dummy_inputs(device)
131
        inputs["image"] = inputs["image"] / 2 + 0.5
132
        image = sd_pipe(**inputs).images
133
134
135
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
136
        expected_slice = np.array([0.4555, 0.3216, 0.4049, 0.4620, 0.4618, 0.4126, 0.4122, 0.4629, 0.4579])
137

138
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
139
140
141

    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
142
143
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
144
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=True)
145
146
147
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

148
        inputs = self.get_dummy_inputs(device)
149
        inputs["image"] = inputs["image"] / 2 + 0.5
150
        negative_prompt = "french fries"
151
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
152
153
154
155
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
156
        expected_slice = np.array([0.4593, 0.3408, 0.4232, 0.4749, 0.4476, 0.4115, 0.4357, 0.4733, 0.4663])
157

158
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
159
160
161

    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
162
163
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
164
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=True)
165
166
167
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

168
169
170
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * 2
        inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
171
        inputs["image"] = inputs["image"] / 2 + 0.5
172
        image = sd_pipe(**inputs).images
173
174
175
        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
176
        expected_slice = np.array([0.4241, 0.5576, 0.5711, 0.4792, 0.4311, 0.5952, 0.5827, 0.5138, 0.5109])
177

178
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
179
180
181

    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
182
183
184
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
185
        )
186
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
187
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=True)
188
189
190
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

191
        inputs = self.get_dummy_inputs(device)
192
        inputs["image"] = inputs["image"] / 2 + 0.5
193
        image = sd_pipe(**inputs).images
194
195
196
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
197
        expected_slice = np.array([0.4398, 0.4949, 0.4337, 0.6580, 0.5555, 0.4338, 0.5769, 0.5955, 0.5175])
198

199
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
215
216
217
218
        return super().test_attention_slicing_forward_pass(expected_max_diff=5e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)
219

220
221

@slow
222
@require_torch_gpu
223
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
224
225
226
227
228
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

229
230
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
231
        init_image = load_image(
232
233
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
234
        )
235
236
237
238
239
240
241
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 3,
            "strength": 0.75,
            "guidance_scale": 7.5,
YiYi Xu's avatar
YiYi Xu committed
242
            "output_type": "np",
243
244
        }
        return inputs
245

246
247
    def test_stable_diffusion_img2img_default(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
248
249
250
251
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

252
253
254
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
255

256
        assert image.shape == (1, 512, 768, 3)
257
258
        expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923])

259
        assert np.abs(expected_slice - image_slice).max() < 1e-3
260

261
262
263
    def test_stable_diffusion_img2img_k_lms(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
264
265
266
267
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

268
269
270
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
271

272
        assert image.shape == (1, 512, 768, 3)
273
274
        expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271])

275
        assert np.abs(expected_slice - image_slice).max() < 1e-3
276

277
278
279
    def test_stable_diffusion_img2img_ddim(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
280
281
282
283
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

284
285
286
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
287

288
        assert image.shape == (1, 512, 768, 3)
289
290
        expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])

291
        assert np.abs(expected_slice - image_slice).max() < 1e-3
292
293
294
295

    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

296
297
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
298
299
            nonlocal number_of_steps
            number_of_steps += 1
300
            if step == 1:
301
302
303
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
304
305
306
                expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
307
            elif step == 2:
308
309
310
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
311
312
313
                expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
314

315
        callback_fn.has_been_called = False
316
317

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
318
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
319
        )
320
        pipe = pipe.to(torch_device)
321
322
323
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

324
325
326
327
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == 2
328
329
330
331

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
332
        torch.cuda.reset_peak_memory_stats()
333
334

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
335
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
336
        )
337
        pipe = pipe.to(torch_device)
338
339
340
341
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

342
343
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
344
345

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
346
347
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
        _ = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

        assert mem_bytes_offloaded < mem_bytes
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    def test_img2img_2nd_order(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = HeunDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 10
        inputs["strength"] = 0.75
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/img2img_heun.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 5e-2

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 11
        inputs["strength"] = 0.75
        image_other = sd_pipe(**inputs).images[0]

        mean_diff = np.abs(image - image_other).mean()

        # images should be very similar
        assert mean_diff < 5e-2

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        # resize to resolution that is divisible by 8 but not 16 or 32
        init_image = init_image.resize((760, 504))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

436
        generator = torch.manual_seed(0)
437
438
439
440
441
442
443
444
445
446
447
448
449
        output = pipe(
            prompt=prompt,
            image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        image_slice = image[255:258, 383:386, -1]

        assert image.shape == (504, 760, 3)
450
451
452
        expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
    def test_img2img_safety_checker_works(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 20
        # make sure the safety checker is activated
        inputs["prompt"] = "naked, sex, porn"
        out = sd_pipe(**inputs)

        assert out.nsfw_content_detected[0], f"Safety checker should work for prompt: {inputs['prompt']}"
        assert np.abs(out.images[0]).sum() < 1e-5  # should be all zeros

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    def test_img2img_compile(self):
        if version.parse(torch.__version__) < version.parse("2.0"):
            print(f"Test `test_stable_diffusion_ddim` is skipped because {torch.__version__} is < 2.0")
            return

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 768, 3)
        expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])

        assert np.abs(expected_slice - image_slice).max() < 1e-3

490
491
492
493
494
495
496
497
498

@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

499
500
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
501
502
503
504
505
506
507
508
509
510
511
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
        )
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 50,
            "strength": 0.75,
            "guidance_scale": 7.5,
YiYi Xu's avatar
YiYi Xu committed
512
            "output_type": "np",
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
        }
        return inputs

    def test_img2img_pndm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_ddim(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_lms(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_dpm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3