test_stable_diffusion_img2img.py 22.4 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from packaging import version
23
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
24
25
26

from diffusers import (
    AutoencoderKL,
27
    DDIMScheduler,
28
    DPMSolverMultistepScheduler,
29
    HeunDiscreteScheduler,
30
31
32
33
34
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    UNet2DConditionModel,
)
YiYi Xu's avatar
YiYi Xu committed
35
from diffusers.image_processor import VaeImageProcessor
36
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
37
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
38

39
40
41
42
43
44
from ..pipeline_params import (
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
45

46
47
48
49

torch.backends.cuda.matmul.allow_tf32 = False


50
class StableDiffusionImg2ImgPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
51
    pipeline_class = StableDiffusionImg2ImgPipeline
52
53
54
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
55
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
56

57
    def get_dummy_components(self):
58
        torch.manual_seed(0)
59
        unet = UNet2DConditionModel(
60
61
62
63
64
65
66
67
68
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
69
        scheduler = PNDMScheduler(skip_prk_steps=True)
70
        torch.manual_seed(0)
71
        vae = AutoencoderKL(
72
73
74
75
76
77
78
79
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
80
        text_encoder_config = CLIPTextConfig(
81
82
83
84
85
86
87
88
89
90
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
91
92
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
93

94
95
96
97
98
99
100
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
101
            "feature_extractor": None,
102
103
104
        }
        return components

105
    def get_dummy_inputs(self, device, seed=0):
106
107
108
109
110
111
112
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
113
            "image": image,
114
115
116
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
117
            "output_type": "numpy",
118
119
        }
        return inputs
120

121
    def test_stable_diffusion_img2img_default_case(self):
122
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
123
124
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
125
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=True)
126
127
128
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

129
        inputs = self.get_dummy_inputs(device)
130
        inputs["image"] = inputs["image"] / 2 + 0.5
131
        image = sd_pipe(**inputs).images
132
133
134
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
135
        expected_slice = np.array([0.4555, 0.3216, 0.4049, 0.4620, 0.4618, 0.4126, 0.4122, 0.4629, 0.4579])
136

137
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
138
139
140

    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
141
142
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
143
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=True)
144
145
146
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

147
        inputs = self.get_dummy_inputs(device)
148
        inputs["image"] = inputs["image"] / 2 + 0.5
149
        negative_prompt = "french fries"
150
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
151
152
153
154
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
155
        expected_slice = np.array([0.4593, 0.3408, 0.4232, 0.4749, 0.4476, 0.4115, 0.4357, 0.4733, 0.4663])
156

157
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
158
159
160

    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
161
162
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
163
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=True)
164
165
166
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

167
168
169
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * 2
        inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
170
        inputs["image"] = inputs["image"] / 2 + 0.5
171
        image = sd_pipe(**inputs).images
172
173
174
        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
175
        expected_slice = np.array([0.4241, 0.5576, 0.5711, 0.4792, 0.4311, 0.5952, 0.5827, 0.5138, 0.5109])
176

177
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
178
179
180

    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
181
182
183
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
184
        )
185
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
186
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=True)
187
188
189
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

190
        inputs = self.get_dummy_inputs(device)
191
        inputs["image"] = inputs["image"] / 2 + 0.5
192
        image = sd_pipe(**inputs).images
193
194
195
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
196
        expected_slice = np.array([0.4398, 0.4949, 0.4337, 0.6580, 0.5555, 0.4338, 0.5769, 0.5955, 0.5175])
197

198
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

216
217

@slow
218
@require_torch_gpu
219
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
220
221
222
223
224
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

225
226
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
227
        init_image = load_image(
228
229
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
230
        )
231
232
233
234
235
236
237
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 3,
            "strength": 0.75,
            "guidance_scale": 7.5,
YiYi Xu's avatar
YiYi Xu committed
238
            "output_type": "np",
239
240
        }
        return inputs
241

242
243
    def test_stable_diffusion_img2img_default(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
244
245
246
247
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

248
249
250
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
251

252
        assert image.shape == (1, 512, 768, 3)
253
254
        expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923])

255
        assert np.abs(expected_slice - image_slice).max() < 1e-3
256

257
258
259
    def test_stable_diffusion_img2img_k_lms(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
260
261
262
263
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

264
265
266
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
267

268
        assert image.shape == (1, 512, 768, 3)
269
270
        expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271])

271
        assert np.abs(expected_slice - image_slice).max() < 1e-3
272

273
274
275
    def test_stable_diffusion_img2img_ddim(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
276
277
278
279
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

280
281
282
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
283

284
        assert image.shape == (1, 512, 768, 3)
285
286
        expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])

287
        assert np.abs(expected_slice - image_slice).max() < 1e-3
288
289
290
291

    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

292
293
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
294
295
            nonlocal number_of_steps
            number_of_steps += 1
296
            if step == 1:
297
298
299
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
300
301
302
                expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
303
            elif step == 2:
304
305
306
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
307
308
309
                expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
310

311
        callback_fn.has_been_called = False
312
313

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
314
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
315
        )
316
        pipe = pipe.to(torch_device)
317
318
319
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

320
321
322
323
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == 2
324
325
326
327

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
328
        torch.cuda.reset_peak_memory_stats()
329
330

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
331
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
332
        )
333
        pipe = pipe.to(torch_device)
334
335
336
337
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

338
339
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
340
341

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
342
343
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9
344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
        _ = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

        assert mem_bytes_offloaded < mem_bytes
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    def test_img2img_2nd_order(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = HeunDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 10
        inputs["strength"] = 0.75
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/img2img_heun.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 5e-2

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 11
        inputs["strength"] = 0.75
        image_other = sd_pipe(**inputs).images[0]

        mean_diff = np.abs(image - image_other).mean()

        # images should be very similar
        assert mean_diff < 5e-2

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        # resize to resolution that is divisible by 8 but not 16 or 32
        init_image = init_image.resize((760, 504))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

432
        generator = torch.manual_seed(0)
433
434
435
436
437
438
439
440
441
442
443
444
445
        output = pipe(
            prompt=prompt,
            image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        image_slice = image[255:258, 383:386, -1]

        assert image.shape == (504, 760, 3)
446
447
448
        expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
    def test_img2img_safety_checker_works(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 20
        # make sure the safety checker is activated
        inputs["prompt"] = "naked, sex, porn"
        out = sd_pipe(**inputs)

        assert out.nsfw_content_detected[0], f"Safety checker should work for prompt: {inputs['prompt']}"
        assert np.abs(out.images[0]).sum() < 1e-5  # should be all zeros

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    def test_img2img_compile(self):
        if version.parse(torch.__version__) < version.parse("2.0"):
            print(f"Test `test_stable_diffusion_ddim` is skipped because {torch.__version__} is < 2.0")
            return

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 768, 3)
        expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])

        assert np.abs(expected_slice - image_slice).max() < 1e-3

486
487
488
489
490
491
492
493
494

@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

495
496
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
497
498
499
500
501
502
503
504
505
506
507
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
        )
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 50,
            "strength": 0.75,
            "guidance_scale": 7.5,
YiYi Xu's avatar
YiYi Xu committed
508
            "output_type": "np",
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        }
        return inputs

    def test_img2img_pndm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_ddim(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_lms(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_dpm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3