test_stable_diffusion_img2img.py 23 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
23
24
25

from diffusers import (
    AutoencoderKL,
26
    DDIMScheduler,
27
    DPMSolverMultistepScheduler,
28
    HeunDiscreteScheduler,
29
30
31
32
33
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    UNet2DConditionModel,
)
YiYi Xu's avatar
YiYi Xu committed
34
from diffusers.image_processor import VaeImageProcessor
35
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
36
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
37

38
39
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
40

41
42
43
44

torch.backends.cuda.matmul.allow_tf32 = False


45
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
46
    pipeline_class = StableDiffusionImg2ImgPipeline
47
48
49
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
50

51
    def get_dummy_components(self):
52
        torch.manual_seed(0)
53
        unet = UNet2DConditionModel(
54
55
56
57
58
59
60
61
62
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
63
        scheduler = PNDMScheduler(skip_prk_steps=True)
64
        torch.manual_seed(0)
65
        vae = AutoencoderKL(
66
67
68
69
70
71
72
73
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
74
        text_encoder_config = CLIPTextConfig(
75
76
77
78
79
80
81
82
83
84
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
85
86
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
87

88
89
90
91
92
93
94
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
95
            "feature_extractor": None,
96
97
98
        }
        return components

YiYi Xu's avatar
YiYi Xu committed
99
    def get_dummy_inputs(self, device, seed=0, input_image_type="pt", output_type="np"):
100
101
102
103
104
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
YiYi Xu's avatar
YiYi Xu committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118

        if input_image_type == "pt":
            input_image = image
        elif input_image_type == "np":
            input_image = image.cpu().numpy().transpose(0, 2, 3, 1)
        elif input_image_type == "pil":
            input_image = image.cpu().numpy().transpose(0, 2, 3, 1)
            input_image = VaeImageProcessor.numpy_to_pil(input_image)
        else:
            raise ValueError(f"unsupported input_image_type {input_image_type}.")

        if output_type not in ["pt", "np", "pil"]:
            raise ValueError(f"unsupported output_type {output_type}")

119
120
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
YiYi Xu's avatar
YiYi Xu committed
121
            "image": input_image,
122
123
124
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
YiYi Xu's avatar
YiYi Xu committed
125
            "output_type": output_type,
126
127
        }
        return inputs
128

129
    def test_stable_diffusion_img2img_default_case(self):
130
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
131
132
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
YiYi Xu's avatar
YiYi Xu committed
133
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=False)
134
135
136
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

137
138
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
139
140
141
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
142
        expected_slice = np.array([0.4555, 0.3216, 0.4049, 0.4620, 0.4618, 0.4126, 0.4122, 0.4629, 0.4579])
143

144
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
145
146
147

    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
148
149
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
YiYi Xu's avatar
YiYi Xu committed
150
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=False)
151
152
153
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

154
        inputs = self.get_dummy_inputs(device)
155
        negative_prompt = "french fries"
156
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
157
158
159
160
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
161
        expected_slice = np.array([0.4593, 0.3408, 0.4232, 0.4749, 0.4476, 0.4115, 0.4357, 0.4733, 0.4663])
162

163
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
164
165
166

    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
167
168
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
YiYi Xu's avatar
YiYi Xu committed
169
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=False)
170
171
172
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

173
174
175
176
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * 2
        inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
        image = sd_pipe(**inputs).images
177
178
179
        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
180
        expected_slice = np.array([0.4241, 0.5576, 0.5711, 0.4792, 0.4311, 0.5952, 0.5827, 0.5138, 0.5109])
181

182
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
183
184
185

    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
186
187
188
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
189
        )
190
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
YiYi Xu's avatar
YiYi Xu committed
191
        sd_pipe.image_processor = VaeImageProcessor(vae_scale_factor=sd_pipe.vae_scale_factor, do_normalize=False)
192
193
194
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

195
196
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
197
198
199
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
200
        expected_slice = np.array([0.4398, 0.4949, 0.4337, 0.6580, 0.5555, 0.4338, 0.5769, 0.5955, 0.5175])
201

202
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

YiYi Xu's avatar
YiYi Xu committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    @skip_mps
    def test_pt_np_pil_outputs_equivalent(self):
        device = "cpu"
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        output_pt = sd_pipe(**self.get_dummy_inputs(device, output_type="pt"))[0]
        output_np = sd_pipe(**self.get_dummy_inputs(device, output_type="np"))[0]
        output_pil = sd_pipe(**self.get_dummy_inputs(device, output_type="pil"))[0]

        assert np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max() <= 1e-4
        assert np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max() <= 1e-4

    @skip_mps
    def test_image_types_consistent(self):
        device = "cpu"
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        output_pt = sd_pipe(**self.get_dummy_inputs(device, input_image_type="pt"))[0]
        output_np = sd_pipe(**self.get_dummy_inputs(device, input_image_type="np"))[0]
        output_pil = sd_pipe(**self.get_dummy_inputs(device, input_image_type="pil"))[0]

        assert np.abs(output_pt - output_np).max() <= 1e-4
        assert np.abs(output_pil - output_np).max() <= 1e-2

250
251

@slow
252
@require_torch_gpu
253
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
254
255
256
257
258
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

259
260
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
261
        init_image = load_image(
262
263
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
264
        )
265
266
267
268
269
270
271
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 3,
            "strength": 0.75,
            "guidance_scale": 7.5,
YiYi Xu's avatar
YiYi Xu committed
272
            "output_type": "np",
273
274
        }
        return inputs
275

276
277
    def test_stable_diffusion_img2img_default(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
278
279
280
281
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

282
283
284
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
285

286
        assert image.shape == (1, 512, 768, 3)
287
288
        expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923])

289
        assert np.abs(expected_slice - image_slice).max() < 1e-3
290

291
292
293
    def test_stable_diffusion_img2img_k_lms(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
294
295
296
297
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

298
299
300
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
301

302
        assert image.shape == (1, 512, 768, 3)
303
304
        expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271])

305
        assert np.abs(expected_slice - image_slice).max() < 1e-3
306

307
308
309
    def test_stable_diffusion_img2img_ddim(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
310
311
312
313
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

314
315
316
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
317

318
        assert image.shape == (1, 512, 768, 3)
319
320
        expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])

321
        assert np.abs(expected_slice - image_slice).max() < 1e-3
322
323
324
325

    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

326
327
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
328
329
            nonlocal number_of_steps
            number_of_steps += 1
330
            if step == 1:
331
332
333
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
334
335
336
                expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
337
            elif step == 2:
338
339
340
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
341
342
343
                expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
344

345
        callback_fn.has_been_called = False
346
347

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
348
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
349
        )
350
        pipe = pipe.to(torch_device)
351
352
353
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

354
355
356
357
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == 2
358
359
360
361

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
362
        torch.cuda.reset_peak_memory_stats()
363
364

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
365
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
366
        )
367
        pipe = pipe.to(torch_device)
368
369
370
371
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

372
373
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
374
375

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
376
377
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9
378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
        _ = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

        assert mem_bytes_offloaded < mem_bytes
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    def test_img2img_2nd_order(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = HeunDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 10
        inputs["strength"] = 0.75
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/img2img_heun.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 5e-2

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 11
        inputs["strength"] = 0.75
        image_other = sd_pipe(**inputs).images[0]

        mean_diff = np.abs(image - image_other).mean()

        # images should be very similar
        assert mean_diff < 5e-2

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        # resize to resolution that is divisible by 8 but not 16 or 32
        init_image = init_image.resize((760, 504))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

466
        generator = torch.manual_seed(0)
467
468
469
470
471
472
473
474
475
476
477
478
479
        output = pipe(
            prompt=prompt,
            image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        image_slice = image[255:258, 383:386, -1]

        assert image.shape == (504, 760, 3)
480
481
482
        expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
483

484
485
486
487
488
489
490
491
492
493
494
495
496
497
    def test_img2img_safety_checker_works(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 20
        # make sure the safety checker is activated
        inputs["prompt"] = "naked, sex, porn"
        out = sd_pipe(**inputs)

        assert out.nsfw_content_detected[0], f"Safety checker should work for prompt: {inputs['prompt']}"
        assert np.abs(out.images[0]).sum() < 1e-5  # should be all zeros

498
499
500
501
502
503
504
505
506

@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

507
508
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
509
510
511
512
513
514
515
516
517
518
519
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
        )
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 50,
            "strength": 0.75,
            "guidance_scale": 7.5,
YiYi Xu's avatar
YiYi Xu committed
520
            "output_type": "np",
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        }
        return inputs

    def test_img2img_pndm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_ddim(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_lms(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_dpm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3