test_stable_diffusion_img2img.py 16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch

from diffusers import (
    AutoencoderKL,
25
    DDIMScheduler,
26
27
28
29
30
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    UNet2DConditionModel,
)
31
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
32
from diffusers.utils.testing_utils import require_torch_gpu
33
from transformers import CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
34

35
36
from ...test_pipelines_common import PipelineTesterMixin

37
38
39
40

torch.backends.cuda.matmul.allow_tf32 = False


41
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
42
    pipeline_class = StableDiffusionImg2ImgPipeline
43

44
    def get_dummy_components(self):
45
        torch.manual_seed(0)
46
        unet = UNet2DConditionModel(
47
48
49
50
51
52
53
54
55
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
56
        scheduler = PNDMScheduler(skip_prk_steps=True)
57
        torch.manual_seed(0)
58
        vae = AutoencoderKL(
59
60
61
62
63
64
65
66
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
67
        text_encoder_config = CLIPTextConfig(
68
69
70
71
72
73
74
75
76
77
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
78
79
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
80
        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
81

82
83
84
85
86
87
88
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
89
            "feature_extractor": feature_extractor,
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
108

109
    def test_stable_diffusion_img2img_default_case(self):
110
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
111
112
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
113
114
115
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

116
117
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
118
119
120
121
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
122
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
123
124
125

    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
126
127
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
128
129
130
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

131
        inputs = self.get_dummy_inputs(device)
132
        negative_prompt = "french fries"
133
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
134
135
136
137
138
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
139
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
140
141
142

    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
143
144
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
145
146
147
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

148
149
150
151
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * 2
        inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
        image = sd_pipe(**inputs).images
152
153
154
155
        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
        expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
156
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
157
158
159

    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
160
161
162
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
163
        )
164
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
165
166
167
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

168
169
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
170
171
172
173
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
174
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
175
176

    def test_stable_diffusion_img2img_num_images_per_prompt(self):
177
178
179
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
180
181
182
183
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # test num_images_per_prompt=1 (default)
184
185
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs).images
186
187
188
189
190

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
191
192
193
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs).images
194
195
196
197
198

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
199
200
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
201
202
203
204
205

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
206
207
208
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
209
210
211
212
213

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)


@slow
214
215
@require_torch_gpu
class StableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
216
217
218
219
220
221
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

222
    def test_stable_diffusion_img2img_pipeline_default(self):
223
224
225
226
227
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
228
        expected_image = load_numpy(
229
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.npy"
230
        )
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
246
            image=init_image,
247
248
249
250
251
252
253
254
255
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 768, 3)
        # img2img is flaky across GPUs even in fp32, so using MAE here
256
        assert np.abs(expected_image - image).max() < 1e-3
257
258
259
260
261
262
263

    def test_stable_diffusion_img2img_pipeline_k_lms(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
264
        expected_image = load_numpy(
265
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_k_lms.npy"
266
        )
267
268

        model_id = "CompVis/stable-diffusion-v1-4"
269
        lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=lms,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
284
            image=init_image,
285
286
287
288
289
290
291
292
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 768, 3)
293
294
295
296
297
298
299
300
301
302
303
304
305
        assert np.abs(expected_image - image).max() < 1e-3

    def test_stable_diffusion_img2img_pipeline_ddim(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_ddim.npy"
        )

        model_id = "CompVis/stable-diffusion-v1-4"
306
        ddim = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=ddim,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
321
            image=init_image,
322
323
324
325
326
327
328
329
330
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 768, 3)
        assert np.abs(expected_image - image).max() < 1e-3
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.9052, -0.0184, 0.4810, 0.2898, 0.5851, 1.4920, 0.5362, 1.9838, 0.0530])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
            elif step == 37:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.7071, 0.7831, 0.8300, 1.8140, 1.7840, 1.9402, 1.3651, 1.6590, 1.2828])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2

        test_callback_fn.has_been_called = False

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
361
362
363
            "CompVis/stable-diffusion-v1-4",
            revision="fp16",
            torch_dtype=torch.float16,
364
365
366
367
368
369
370
371
372
373
374
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
375
                image=init_image,
376
377
378
379
380
381
382
383
                strength=0.75,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
384
        assert number_of_steps == 37
385
386
387
388

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
389
        torch.cuda.reset_peak_memory_stats()
390
391
392
393
394
395
396
397

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
398
        lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
399
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
Anton Lozhkov's avatar
Anton Lozhkov committed
400
            model_id, scheduler=lms, safety_checker=None, device_map="auto", revision="fp16", torch_dtype=torch.float16
401
402
403
404
405
406
407
408
409
410
411
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        _ = pipe(
            prompt=prompt,
412
            image=init_image,
413
414
415
416
417
418
419
420
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
            num_inference_steps=5,
        )

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
421
422
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9