test_stable_diffusion_img2img.py 17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch

from diffusers import (
    AutoencoderKL,
25
    DDIMScheduler,
26
    DPMSolverMultistepScheduler,
27
28
29
30
31
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    UNet2DConditionModel,
)
32
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
33
from diffusers.utils.testing_utils import require_torch_gpu
34
from transformers import CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
35

36
37
from ...test_pipelines_common import PipelineTesterMixin

38
39
40
41

torch.backends.cuda.matmul.allow_tf32 = False


42
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
43
    pipeline_class = StableDiffusionImg2ImgPipeline
44

45
    def get_dummy_components(self):
46
        torch.manual_seed(0)
47
        unet = UNet2DConditionModel(
48
49
50
51
52
53
54
55
56
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
57
        scheduler = PNDMScheduler(skip_prk_steps=True)
58
        torch.manual_seed(0)
59
        vae = AutoencoderKL(
60
61
62
63
64
65
66
67
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
68
        text_encoder_config = CLIPTextConfig(
69
70
71
72
73
74
75
76
77
78
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
79
80
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
81
        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
82

83
84
85
86
87
88
89
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
90
            "feature_extractor": feature_extractor,
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
109

110
    def test_stable_diffusion_img2img_default_case(self):
111
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
112
113
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
114
115
116
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

117
118
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
119
120
121
122
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
123
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
124
125
126

    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
127
128
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
129
130
131
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

132
        inputs = self.get_dummy_inputs(device)
133
        negative_prompt = "french fries"
134
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
135
136
137
138
139
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
140
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
141
142
143

    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
144
145
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
146
147
148
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

149
150
151
152
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * 2
        inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
        image = sd_pipe(**inputs).images
153
154
155
156
        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
        expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
157
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
158
159
160

    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
161
162
163
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
164
        )
165
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
166
167
168
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

169
170
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
171
172
173
174
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
175
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
176
177

    def test_stable_diffusion_img2img_num_images_per_prompt(self):
178
179
180
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
181
182
183
184
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # test num_images_per_prompt=1 (default)
185
186
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs).images
187
188
189
190
191

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
192
193
194
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs).images
195
196
197
198
199

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
200
201
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
202
203
204
205
206

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
207
208
209
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
210
211
212
213
214

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)


@slow
215
@require_torch_gpu
216
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
217
218
219
220
221
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

222
223
    def get_inputs(self, device, dtype=torch.float32, seed=0):
        generator = torch.Generator(device=device).manual_seed(seed)
224
        init_image = load_image(
225
226
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
227
        )
228
229
230
231
232
233
234
235
236
237
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 3,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
238

239
240
    def test_stable_diffusion_img2img_default(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
241
242
243
244
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

245
246
247
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
248

249
250
251
        assert image.shape == (1, 512, 768, 3)
        expected_slice = np.array([0.27150, 0.14849, 0.15605, 0.26740, 0.16954, 0.18204, 0.31470, 0.26311, 0.24525])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
252

253
254
255
    def test_stable_diffusion_img2img_k_lms(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
256
257
258
259
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

260
261
262
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
263

264
265
266
        assert image.shape == (1, 512, 768, 3)
        expected_slice = np.array([0.04890, 0.04862, 0.06422, 0.04655, 0.05108, 0.05307, 0.05926, 0.08759, 0.06852])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
267

268
269
270
    def test_stable_diffusion_img2img_ddim(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
271
272
273
274
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

275
276
277
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
278

279
280
281
        assert image.shape == (1, 512, 768, 3)
        expected_slice = np.array([0.06069, 0.05703, 0.08054, 0.05797, 0.06286, 0.06234, 0.08438, 0.11151, 0.08068])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
282
283
284
285

    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

286
287
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
288
289
            nonlocal number_of_steps
            number_of_steps += 1
290
            if step == 1:
291
292
293
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
294
                expected_slice = np.array([0.7705, 0.1045, 0.5, 3.393, 3.723, 4.273, 2.467, 3.486, 1.758])
295
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
296
            elif step == 2:
297
298
299
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
300
301
                expected_slice = np.array([0.765, 0.1047, 0.4973, 3.375, 3.709, 4.258, 2.451, 3.46, 1.755])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
302

303
        callback_fn.has_been_called = False
304
305

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
306
            "CompVis/stable-diffusion-v1-4", safety_checker=None, revision="fp16", torch_dtype=torch.float16
307
        )
308
        pipe = pipe.to(torch_device)
309
310
311
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

312
313
314
315
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == 2
316
317
318
319

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
320
        torch.cuda.reset_peak_memory_stats()
321
322

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
323
            "CompVis/stable-diffusion-v1-4", safety_checker=None, revision="fp16", torch_dtype=torch.float16
324
        )
325
        pipe = pipe.to(torch_device)
326
327
328
329
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

330
331
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
332
333

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
334
335
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425


@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, dtype=torch.float32, seed=0):
        generator = torch.Generator(device=device).manual_seed(seed)
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
        )
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 50,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_img2img_pndm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_ddim(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_lms(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_dpm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3