test_stable_diffusion_img2img.py 22.7 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
18
import traceback
19
20
21
22
import unittest

import numpy as np
import torch
23
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
24
25
26

from diffusers import (
    AutoencoderKL,
27
    DDIMScheduler,
28
    DPMSolverMultistepScheduler,
29
    HeunDiscreteScheduler,
30
31
32
33
34
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    UNet2DConditionModel,
)
35
36
from diffusers.utils.testing_utils import (
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
37
38
39
40
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
41
42
43
44
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
45
46
    slow,
    torch_device,
47
)
48

49
50
51
52
53
from ..pipeline_params import (
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
54
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
55

56

57
enable_full_determinism()
58
59


60
61
62
63
64
65
66
67
68
69
70
# Will be run via run_test_in_subprocess
def _test_img2img_compile(in_queue, out_queue, timeout):
    error = None
    try:
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
71
        pipe.unet.set_default_attn_processor()
72
73
74
75
76
77
78
79
80
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 768, 3)
81
        expected_slice = np.array([0.0606, 0.0570, 0.0805, 0.0579, 0.0628, 0.0623, 0.0843, 0.1115, 0.0806])
82
83
84
85
86
87
88
89
90
91

        assert np.abs(expected_slice - image_slice).max() < 1e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


92
93
94
class StableDiffusionImg2ImgPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
95
    pipeline_class = StableDiffusionImg2ImgPipeline
96
97
98
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
99
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
100
    image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
101

102
    def get_dummy_components(self):
103
        torch.manual_seed(0)
104
        unet = UNet2DConditionModel(
105
106
107
108
109
110
111
112
113
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
114
        scheduler = PNDMScheduler(skip_prk_steps=True)
115
        torch.manual_seed(0)
116
        vae = AutoencoderKL(
117
118
119
120
121
122
123
124
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
125
        text_encoder_config = CLIPTextConfig(
126
127
128
129
130
131
132
133
134
135
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
136
137
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
138

139
140
141
142
143
144
145
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
146
            "feature_extractor": None,
147
148
149
        }
        return components

150
    def get_dummy_inputs(self, device, seed=0):
151
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
152
        image = image / 2 + 0.5
153
154
155
156
157
158
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
159
            "image": image,
160
161
162
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
163
            "output_type": "numpy",
164
165
        }
        return inputs
166

167
    def test_stable_diffusion_img2img_default_case(self):
168
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
169
170
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
171
172
173
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

174
175
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
176
177
178
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
179
        expected_slice = np.array([0.4555, 0.3216, 0.4049, 0.4620, 0.4618, 0.4126, 0.4122, 0.4629, 0.4579])
180

181
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
182
183
184

    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
185
186
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
187
188
189
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

190
        inputs = self.get_dummy_inputs(device)
191
        negative_prompt = "french fries"
192
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
193
194
195
196
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
197
        expected_slice = np.array([0.4593, 0.3408, 0.4232, 0.4749, 0.4476, 0.4115, 0.4357, 0.4733, 0.4663])
198

199
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
200
201
202

    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
203
204
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
205
206
207
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

208
209
210
211
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * 2
        inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
        image = sd_pipe(**inputs).images
212
213
214
        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
215
        expected_slice = np.array([0.4241, 0.5576, 0.5711, 0.4792, 0.4311, 0.5952, 0.5827, 0.5138, 0.5109])
216

217
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
218
219
220

    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
221
222
223
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
224
        )
225
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
226
227
228
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

229
230
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
231
232
233
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
234
        expected_slice = np.array([0.4398, 0.4949, 0.4337, 0.6580, 0.5555, 0.4338, 0.5769, 0.5955, 0.5175])
235

236
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
237

238
239
240
241
242
243
244
245
246
247
248
249
250
251
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
252
253
254
255
        return super().test_attention_slicing_forward_pass(expected_max_diff=5e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)
256

257
258

@slow
259
@require_torch_gpu
260
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
261
262
263
264
265
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

266
267
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
268
        init_image = load_image(
269
270
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
271
        )
272
273
274
275
276
277
278
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 3,
            "strength": 0.75,
            "guidance_scale": 7.5,
YiYi Xu's avatar
YiYi Xu committed
279
            "output_type": "np",
280
281
        }
        return inputs
282

283
284
    def test_stable_diffusion_img2img_default(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
285
286
287
288
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

289
290
291
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
292

293
        assert image.shape == (1, 512, 768, 3)
294
295
        expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923])

296
        assert np.abs(expected_slice - image_slice).max() < 1e-3
297

298
299
300
    def test_stable_diffusion_img2img_k_lms(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
301
302
303
304
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

305
306
307
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
308

309
        assert image.shape == (1, 512, 768, 3)
310
311
        expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271])

312
        assert np.abs(expected_slice - image_slice).max() < 1e-3
313

314
315
316
    def test_stable_diffusion_img2img_ddim(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
317
318
319
320
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

321
322
323
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
324

325
        assert image.shape == (1, 512, 768, 3)
326
327
        expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])

328
        assert np.abs(expected_slice - image_slice).max() < 1e-3
329
330
331
332

    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

333
334
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
335
336
            nonlocal number_of_steps
            number_of_steps += 1
337
            if step == 1:
338
339
340
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
341
342
343
                expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
344
            elif step == 2:
345
346
347
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
348
349
350
                expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
351

352
        callback_fn.has_been_called = False
353
354

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
355
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
356
        )
357
        pipe = pipe.to(torch_device)
358
359
360
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

361
362
363
364
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == 2
365
366
367
368

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
369
        torch.cuda.reset_peak_memory_stats()
370
371

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
372
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
373
        )
374
        pipe = pipe.to(torch_device)
375
376
377
378
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

379
380
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
381
382

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
383
384
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9
385

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
        _ = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

        assert mem_bytes_offloaded < mem_bytes
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def test_img2img_2nd_order(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = HeunDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 10
        inputs["strength"] = 0.75
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/img2img_heun.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 5e-2

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 11
        inputs["strength"] = 0.75
        image_other = sd_pipe(**inputs).images[0]

        mean_diff = np.abs(image - image_other).mean()

        # images should be very similar
        assert mean_diff < 5e-2

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        # resize to resolution that is divisible by 8 but not 16 or 32
        init_image = init_image.resize((760, 504))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

473
        generator = torch.manual_seed(0)
474
475
476
477
478
479
480
481
482
483
484
485
486
        output = pipe(
            prompt=prompt,
            image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        image_slice = image[255:258, 383:386, -1]

        assert image.shape == (504, 760, 3)
487
488
489
        expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
490

491
492
493
494
495
496
497
498
499
500
501
502
503
504
    def test_img2img_safety_checker_works(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 20
        # make sure the safety checker is activated
        inputs["prompt"] = "naked, sex, porn"
        out = sd_pipe(**inputs)

        assert out.nsfw_content_detected[0], f"Safety checker should work for prompt: {inputs['prompt']}"
        assert np.abs(out.images[0]).sum() < 1e-5  # should be all zeros

505
    @require_torch_2
506
    def test_img2img_compile(self):
507
508
509
510
511
512
513
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_img2img_compile, inputs=inputs)
514

515
516
517
518
519
520
521
522
523

@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

524
525
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
526
527
528
529
530
531
532
533
534
535
536
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
        )
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 50,
            "strength": 0.75,
            "guidance_scale": 7.5,
YiYi Xu's avatar
YiYi Xu committed
537
            "output_type": "np",
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        }
        return inputs

    def test_img2img_pndm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_ddim(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_lms(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_dpm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3