"src/array/cuda/array_sort.hip" did not exist on "9a00cf194fcf994b2527cd927d691144f5e9c47b"
kernel.cc 31.7 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

Zhi Lin's avatar
Zhi Lin committed
9
10
#ifdef USE_TVM
#include <featgraph.h>
11
#include <dgl/runtime/dlpack_convert.h>
Zhi Lin's avatar
Zhi Lin committed
12
13
#endif  // USE_TVM

14
15
#include "kernel_decl.h"
#include "../c_api_common.h"
16
#include "./check.h"
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
32
          std::vector<NDArray> out_aux) {
33
  // TODO(zihao): format tuning
34
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
35
36
37
38
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
39
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
40
        if (format == SparseFormat::kCSC) {
41
          SpMMCsr<XPU, IdType, bits>(
42
43
44
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
45
          SpMMCoo<XPU, IdType, bits>(
46
47
48
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
49
          LOG(FATAL) << "SpMM only supports CSC and COO formats";
50
51
52
53
54
55
        }
      });
    });
  });
}

Israt Nisa's avatar
Israt Nisa committed
56
57
58

/*! \brief Generalized segmented dense Matrix-Matrix Multiplication. */
void SegmentMM(const NDArray A,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
               const NDArray B,
               NDArray C,
               const NDArray seglen_A,
               bool A_trans, bool B_trans) {
  CHECK_EQ(A->ndim, 2) << "segment_mm expects a 2D tensor for the first input.";
  CHECK_EQ(B->ndim, 3) << "segment_mm expects a 3D tensor for the second input.";
  CHECK(!A_trans);
  if (B_trans) {
    CHECK_EQ(A->shape[1], B->shape[2])
      << "segment_mm expects A.shape[1] == B.shape[2] when B_trans=True";
  } else {
    CHECK_EQ(A->shape[1], B->shape[1]) << "segment_mm expects A.shape[1] == B.shape[1]";
  }
  CHECK_EQ(B->shape[0], seglen_A.NumElements())
    << "segment_mm expects len(seglen_A) == B.shape[0]";
74
  CHECK_EQ(seglen_A->ctx.device_type, kDGLCPU)
75
76
77
    << "segment_mm expects seglen_A to be on CPU.";
  CHECK(A->ctx == B->ctx) << "segment_mm expects A and B to be of the same device";
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "SegmentMM", {
Israt Nisa's avatar
Israt Nisa committed
78
79
    ATEN_ID_TYPE_SWITCH(seglen_A->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
80
81
82
83
84
85
86
87
88
89
90
91
92
        SegmentMM<XPU, IdType, bits>(A, B, C, seglen_A, A_trans, B_trans);
      });
    });
  });
}

void SegmentMMBackwardB(const NDArray A,
                        const NDArray dC,
                        NDArray dB,
                        const NDArray seglen) {
  CHECK_EQ(A->ndim, 2) << "segment_mm_backward operator expects a 2D tensor for the first input.";
  CHECK_EQ(dC->ndim, 2)
    << "segment_mm_backward operator expects a 2D tensor for the second input.";
93
  CHECK_EQ(seglen->ctx.device_type, kDGLCPU)
94
95
96
97
98
    << "segment_mm expects seglen to be on CPU.";
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "SegmentMMBackwardB", {
    ATEN_ID_TYPE_SWITCH(seglen->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
        SegmentMMBackwardB<XPU, IdType, bits>(A, dC, dB, seglen);
Israt Nisa's avatar
Israt Nisa committed
99
100
101
102
103
104
105
106
      });
    });
  });
}


/*! \brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
void GatherMM(const NDArray A,
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
              const NDArray B,
              NDArray C,
              const NDArray idx_a,
              const NDArray idx_b) {
  CHECK_EQ(A->ndim, 2) << "gather_mm operator expects a 2D tensor for the first input.";
  CHECK_EQ(B->ndim, 3) << "gather_mm operator expects a 3D tensor for the second input.";
  CHECK(A->ctx == B->ctx)
    << "gather_mm expects all arguments to be on the same device.";
  if (aten::IsNullArray(idx_a)) {
    CHECK_EQ(A->shape[0], idx_b->shape[0])
      << "gather_mm expects len(idx_b) == A.shape[0] when idx_a is None.";
    CHECK(A->ctx == idx_b->ctx)
      << "gather_mm expects all arguments to be on the same device.";
  } else if (aten::IsNullArray(idx_b)) {
    CHECK_EQ(B->shape[0], idx_a->shape[0])
      << "gather_mm expects len(idx_a) == B.shape[0] when idx_b is None.";
    CHECK(A->ctx == idx_a->ctx)
      << "gather_mm expects all arguments to be on the same device.";
  } else {
    CHECK_EQ(idx_a->shape[0], idx_b->shape[0])
      << "gather_mm expects len(idx_a) == len(idx_b) when both idx_a and idx_b are given.";
    CHECK(A->ctx == idx_a->ctx && A->ctx == idx_b->ctx)
      << "gather_mm expects all arguments to be on the same device.";
  }
  const auto idtype = aten::IsNullArray(idx_a)? idx_b->dtype : idx_a->dtype;
Israt Nisa's avatar
Israt Nisa committed
132
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "GatherMM", {
133
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
Israt Nisa's avatar
Israt Nisa committed
134
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
135
        GatherMM<XPU, IdType, bits>(A, B, C, idx_a, idx_b);
Israt Nisa's avatar
Israt Nisa committed
136
137
138
139
140
141
142
      });
    });
  });
}


/*! \brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
void GatherMMScatter(const NDArray A,
                     const NDArray B,
                     NDArray C,
                     const NDArray idx_a,
                     const NDArray idx_b,
                     const NDArray idx_c) {
  CHECK_EQ(A->ndim, 2) << "gather_mm_scatter expects a 2D tensor for the first input.";
  CHECK(A->ctx == B->ctx)
    << "gather_mm_scatter expects all arguments to be on the same device.";
  if (!aten::IsNullArray(idx_c))
    CHECK(A->ctx == idx_c->ctx)
      << "gather_mm_scatter expects all arguments to be on the same device.";
  if (aten::IsNullArray(idx_a) && !aten::IsNullArray(idx_b)) {
    CHECK_EQ(A->shape[0], idx_b->shape[0])
      << "gather_mm_scatter expects len(idx_b) == A.shape[0] when idx_a is None.";
    CHECK(A->ctx == idx_b->ctx)
      << "gather_mm_scatter expects all arguments to be on the same device.";
  } else if (aten::IsNullArray(idx_b) && !aten::IsNullArray(idx_a)) {
    CHECK_EQ(B->shape[0], idx_a->shape[0])
      << "gather_mm_scatter expects len(idx_a) == B.shape[0] when idx_b is None.";
    CHECK(A->ctx == idx_a->ctx)
      << "gather_mm_scatter expects all arguments to be on the same device.";
  } else if (!aten::IsNullArray(idx_b) && !aten::IsNullArray(idx_a)) {
    CHECK_EQ(idx_a->shape[0], idx_b->shape[0])
      << "gather_mm_scatter expects len(idx_a) == len(idx_b) "
      << "when both idx_a and idx_b are given.";
    CHECK(A->ctx == idx_a->ctx && A->ctx == idx_b->ctx)
      << "gather_mm_scatter expects all arguments to be on the same device.";
  }
Israt Nisa's avatar
Israt Nisa committed
172
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "GatherMM", {
173
    ATEN_ID_TYPE_SWITCH(idx_c->dtype, IdType, {
Israt Nisa's avatar
Israt Nisa committed
174
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
175
        GatherMMScatter<XPU, IdType, bits>(A, B, C, idx_a, idx_b, idx_c);
Israt Nisa's avatar
Israt Nisa committed
176
177
178
179
180
181
      });
    });
  });
}


182
183
184
/*! \brief Generalized Sparse Matrix-Matrix Multiplication with hetero-graph support. */
void SpMMHetero(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
185
186
187
188
          const std::vector<NDArray>& ufeat_vec,
          const std::vector<NDArray>& efeat_vec,
          std::vector<NDArray>* out,
          std::vector<std::vector<NDArray>>* out_aux) {
189
190
191
192
193
194
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);

  std::vector<CSRMatrix> vec_graph;
  std::vector<dgl_type_t> ufeat_eid;
  std::vector<dgl_type_t> efeat_eid;
  std::vector<dgl_type_t> out_eid;
195
196
197
  auto pair = graph->meta_graph()->FindEdge(0);  // first etype
  NDArray ufeat_etype0 = (ufeat_vec.size() == 0) ? NullArray() : ufeat_vec[pair.first];
  NDArray efeat_etype0 = (efeat_vec.size() == 0) ? NullArray() : efeat_vec[0];
198
199
200
201
202
203
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
    vec_graph.push_back(graph->GetCSCMatrix(etype));
    auto pair = graph->meta_graph()->FindEdge(etype);
    ufeat_eid.push_back(pair.first);
    efeat_eid.push_back(etype);
    out_eid.push_back(pair.second);
204
205
206
207
    if (ufeat_etype0->shape[1] != ufeat_vec[pair.first]->shape[1])
      LOG(FATAL) << "Column width of the input node features of all etypes must be same.";
    if (efeat_etype0->shape[1] != efeat_vec[etype]->shape[1])
      LOG(FATAL) << "Column width of the input edge features of all etypes must be same.";
208
  }
209
  const auto& bcast = CalcBcastOff(op, ufeat_etype0, efeat_etype0);
210

211
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
212
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
213
      ATEN_FLOAT_BITS_SWITCH((*out)[out_eid[0]]->dtype, bits, "Feature data", {
214
215
216
217
218
219
        if (format == SparseFormat::kCSC) {
          SpMMCsrHetero<XPU, IdType, bits>(
              op, reduce, bcast, vec_graph,
              ufeat_vec, efeat_vec, out, out_aux,
              ufeat_eid, out_eid);
        } else {
220
221
222
          // TODO(Israt): Add support for COO format
          LOG(FATAL) << "SpMM only supports CSC format for graphs with number "
                     << "of relation types > 1";
223
224
225
226
227
228
229
        }
      });
    });
  });
}


230
231
232
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
233
234
           NDArray lhs,
           NDArray rhs,
235
           NDArray out,
236
           int lhs_target,
237
           int rhs_target) {
238
  // TODO(zihao): format tuning
239
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
240
  const auto &bcast = CalcBcastOff(op, lhs, rhs);
241
242
243

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
244
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
245
        if (format == SparseFormat::kCSR) {
246
          SDDMMCsr<XPU, IdType, bits>(
247
              op, bcast, graph->GetCSRMatrix(0),
248
              lhs, rhs, out, lhs_target, rhs_target);
249
        } else if (format == SparseFormat::kCOO) {
250
          SDDMMCoo<XPU, IdType, bits>(
251
              op, bcast, graph->GetCOOMatrix(0),
252
              lhs, rhs, out, lhs_target, rhs_target);
253
        } else {
254
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
255
256
257
258
259
260
        }
      });
    });
  });
}

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*!
 * \brief Find the src/dst/etype id based on the target 'u', 'v' or 'e'.
 *
 * \param graph The input graph.
 * \param target 'u', 'v' or 'e'. The target of the lhs or rhs data of an etype.
 * \param etype Relation type of the input graph.
 */
int get_typeid_by_target(HeteroGraphPtr graph, int target, dgl_type_t etype) {
  auto pair = graph->meta_graph()->FindEdge(etype);
  if (target == 0)
    return pair.first;
  if (target == 2)
    return pair.second;
  return etype;
}

277
278
279
280
281
282
283
284
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMMHetero(const std::string& op,
           HeteroGraphPtr graph,
           std::vector<NDArray> lhs,
           std::vector<NDArray> rhs,
           std::vector<NDArray> out,
           int lhs_target,
           int rhs_target) {
285
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
286
287
288
289

  std::vector<dgl_type_t> lhs_eid;
  std::vector<dgl_type_t> rhs_eid;
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
290
291
    lhs_eid.push_back(get_typeid_by_target(graph, lhs_target, etype));
    rhs_eid.push_back(get_typeid_by_target(graph, rhs_target, etype));
292
293
294
  }
  const auto &bcast = CalcBcastOff(op, lhs[lhs_eid[0]], rhs[rhs_eid[0]]);

295
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
296
297
298
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out[rhs_eid[0]]->dtype, bits, "Feature data", {
        if (format == SparseFormat::kCSR) {
299
300
301
302
          std::vector<CSRMatrix> vec_csr;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_csr.push_back(graph->GetCSRMatrix(etype));
          }
303
304
305
306
          SDDMMCsrHetero<XPU, IdType, bits>(
              op, bcast, vec_csr,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
307
308
309
310
311
312
313
314
315
        } else if (format == SparseFormat::kCOO) {
          std::vector<COOMatrix> vec_coo;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_coo.push_back(graph->GetCOOMatrix(etype));
          }
          SDDMMCooHetero<XPU, IdType, bits>(
              op, bcast, vec_coo,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
316
        } else {
317
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
318
319
320
321
322
323
        }
      });
    });
  });
}

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

/*! \brief Generalized Edge_softmax op for forward */
void Edge_softmax_forward(const std::string& op,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out) {
  // TODO(zhejiang): add gpu op for edge_softmax
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "edge_softmax out data", {
        Edge_softmax_csr_forward<XPU, IdType, bits>(
          op, bcast, graph->GetCSCMatrix(0), ufeat, efeat, out);
      });
    });
  });
}


/*! \brief Generalized Edge_softmax op for backward */
void Edge_softmax_backward(const std::string& op,
          HeteroGraphPtr graph,
          NDArray out,
          NDArray sds,
          NDArray back_out,
          NDArray ufeat) {
  // TODO(zhejiang): add gpu op for edge_softmax
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
  const auto& bcast = CalcBcastOff(op, ufeat, sds);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax_back", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "edge_softmax out data_back", {
        Edge_softmax_csr_backward<XPU, IdType, bits>(
          op, bcast, graph->GetCSCMatrix(0), out, sds, back_out);
      });
    });
  });
}


368
NDArray GetEdgeMapping(HeteroGraphRef graph) {
369
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
370
371
372
373
374
375
376
  if (format == SparseFormat::kCSC) {
    return graph.sptr()->GetCSCMatrix(0).data;
  } else {
    return NullArray();
  }
}

377
378
379
380
381
382
383
384
/*! \brief Segment reduce dispatch function. */
void SegmentReduceDispatch(const std::string& op,
                           NDArray feat,
                           NDArray offsets,
                           NDArray out,
                           NDArray arg) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "SegmentReduce", {
    ATEN_ID_TYPE_SWITCH(offsets->dtype, IdType, {
385
386
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
          SegmentReduce<XPU, IdType, bits>(op, feat, offsets, out, arg);
387
388
389
390
391
      });
    });
  });
}

392
393
394
395
396
397
398
399
400
401
402
/*! \brief Scatter Add (on first dimension) dispatch function. */
void ScatterAddDispatch(NDArray feat, NDArray idx, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        ScatterAdd<XPU, IdType, bits>(feat, idx, out);
      });
    });
  });
}

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*! \brief Update gradients (reduce op max/min) dispatch function on heterogeneous graph. */
void UpdateGradMinMaxDispatchHetero(const HeteroGraphPtr& graph,
                        const std::string& op,
                        const std::vector<NDArray>& feat,
                        const std::vector<NDArray>& idx,
                        const std::vector<NDArray>& idx_etype,
                        std::vector<NDArray>* out) {
  auto pair = graph->meta_graph()->FindEdge(0);  // checking the first etype
  auto src_id = pair.first;
  ATEN_XPU_SWITCH_CUDA(feat[src_id]->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx[src_id]->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat[src_id]->dtype, bits, "Feature data", {
        UpdateGradMinMax_hetero<XPU, IdType, bits>(graph, op, feat, idx, idx_etype, out);
      });
    });
  });
}

421
422
423
424
/*! \brief Backward segment cmp dispatch function.*/
void BackwardSegmentCmpDispatch(NDArray feat, NDArray arg, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "BackwardSegmentCmp", {
    ATEN_ID_TYPE_SWITCH(arg->dtype, IdType, {
425
426
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        BackwardSegmentCmp<XPU, IdType, bits>(feat, arg, out);
427
428
429
430
431
      });
    });
  });
}

432
433
434
435
436
std::pair<CSRMatrix, NDArray> CSRMM(
    CSRMatrix A,
    NDArray A_weights,
    CSRMatrix B,
    NDArray B_weights) {
437
438
439
  CHECK_EQ(A.num_cols, B.num_rows) <<
    "The number of nodes of destination node type of the first graph must be the "
    "same as the number of nodes of source node type of the second graph.";
440
441
442
443
444
445
446
447
448
  CheckCtx(
      A.indptr->ctx,
      {A_weights, B_weights},
      {"A's edge weights", "B's edge weights"});
  CHECK_EQ(A.indptr->ctx, B.indptr->ctx) << "Device of two graphs must match.";
  CHECK_EQ(A.indptr->dtype, B.indptr->dtype) << "ID types of two graphs must match.";
  CHECK_EQ(A_weights->dtype, B_weights->dtype) << "Data types of two edge weights must match.";

  std::pair<CSRMatrix, NDArray> ret;
449
  ATEN_XPU_SWITCH_CUDA(A.indptr->ctx.device_type, XPU, "CSRMM", {
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    ATEN_ID_TYPE_SWITCH(A.indptr->dtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
        ret = CSRMM<XPU, IdType, DType>(A, A_weights, B, B_weights);
      });
    });
  });
  return ret;
}

std::pair<CSRMatrix, NDArray> CSRSum(
    const std::vector<CSRMatrix>& A,
    const std::vector<NDArray>& A_weights) {
  CHECK(A.size() > 0) << "The list of graphs must not be empty.";
  CHECK_EQ(A.size(), A_weights.size()) <<
    "The list of edge weights must have the same length as the list of graphs.";
465
466
467
468
469
  const auto ctx = A[0].indptr->ctx;
  const auto idtype = A[0].indptr->dtype;
  const auto dtype = A_weights[0]->dtype;
  const auto num_rows = A[0].num_rows;
  const auto num_cols = A[0].num_cols;
470
471
472
473
474
475
476
477
478
  for (size_t i = 0; i < A.size(); ++i) {
    CHECK_EQ(A[i].indptr->ctx, ctx) << "The devices of all graphs must be equal.";
    CHECK_EQ(A[i].indptr->dtype, idtype) << "The ID types of all graphs must be equal.";
    CHECK_EQ(A[i].indices->shape[0], A_weights[i]->shape[0]) <<
      "Shape of edge weights does not match the number of edges.";
    CHECK_EQ(A_weights[i]->ctx, ctx) <<
      "The devices of edge weights must be the same as that of the graphs.";
    CHECK_EQ(A_weights[i]->dtype, dtype) <<
      "The data types of all edge weights must be equal.";
479
480
    CHECK_EQ(A[i].num_rows, num_rows) << "Graphs must have the same number of nodes.";
    CHECK_EQ(A[i].num_cols, num_cols) << "Graphs must have the same number of nodes.";
481
482
483
  }

  std::pair<CSRMatrix, NDArray> ret;
484
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "CSRSum", {
485
486
487
488
489
490
491
492
493
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(dtype, DType, "Edge weights", {
        ret = CSRSum<XPU, IdType, DType>(A, A_weights);
      });
    });
  });
  return ret;
}

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
517
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE});
518
519
  });

Israt Nisa's avatar
Israt Nisa committed
520
521
522
523
524
525
526
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGATHERMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray B = args[1];
    NDArray C = args[2];
    NDArray idx_a = args[3];
    NDArray idx_b = args[4];
527
    GatherMM(A, B, C, idx_a, idx_b);
Israt Nisa's avatar
Israt Nisa committed
528
529
530
531
532
533
534
535
536
537
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGATHERMMSCATTER")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray B = args[1];
    NDArray C = args[2];
    NDArray idx_a = args[3];
    NDArray idx_b = args[4];
    NDArray idx_c = args[5];
538
    GatherMMScatter(A, B, C, idx_a, idx_b, idx_c);
Israt Nisa's avatar
Israt Nisa committed
539
540
541
542
543
544
545
546
547
548
549
550
551
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSEGMENTMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray B = args[1];
    NDArray C = args[2];
    NDArray seglen_A = args[3];
    bool A_trans = args[4];
    bool B_trans = args[5];
    SegmentMM(A, B, C, seglen_A, A_trans, B_trans);
  });

552
553
554
555
556
557
558
559
560
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSEGMENTMMBackwardB")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray dC = args[1];
    NDArray dB = args[2];
    NDArray seglen = args[3];
    SegmentMMBackwardB(A, dC, dB, seglen);
  });

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_forward")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    NDArray U = args[2];
    NDArray E = args[3];
    NDArray V = args[4];
    Edge_softmax_forward(op, graph.sptr(), U, E, V);
});

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_backward")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    NDArray out = args[2];
    NDArray sds = args[3];
    NDArray back_out = args[4];
    NDArray ufeat = args[5];
    Edge_softmax_backward(op, graph.sptr(), out, sds, back_out, ufeat);
});

582
583
584
585
586
587
588
589
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    List<Value> list_U = args[3];
    List<Value> list_E = args[4];
    List<Value> list_V = args[5];
590
591
592
593
594
595
596
    List<Value> list_ArgU = args[6];
    List<Value> list_ArgE = args[7];
    List<Value> list_ArgU_ntype = args[8];
    List<Value> list_ArgE_etype = args[9];
    std::vector<std::vector<NDArray>> Arg_vec;  // ArgU + ArgE
    for (int i = 0; i < 4; ++i) {  // ArgU + ArgE + ArgU_ntype + ArgE_etype
      Arg_vec.push_back(std::vector<NDArray>());
597
    }
598
599
600
601
602
603
604
    std::vector<NDArray> U_vec = ListValueToVector<NDArray>(list_U);
    std::vector<NDArray> V_vec = ListValueToVector<NDArray>(list_V);
    std::vector<NDArray> E_vec = ListValueToVector<NDArray>(list_E);
    Arg_vec[0] = ListValueToVector<NDArray>(list_ArgU);
    Arg_vec[1] = ListValueToVector<NDArray>(list_ArgE);
    Arg_vec[2] = ListValueToVector<NDArray>(list_ArgU_ntype);
    Arg_vec[3] = ListValueToVector<NDArray>(list_ArgE_etype);
605
606
607
608
609
610
    for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
      auto pair = graph->meta_graph()->FindEdge(etype);
      const dgl_id_t src_id = pair.first;
      const dgl_id_t dst_id = pair.second;
      NDArray U = (U_vec.size() == 0) ? NullArray() : U_vec[src_id];
      NDArray E = (E_vec.size() == 0) ? NullArray() : E_vec[etype];
611
      CheckCtx(graph->Context(), {U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
612
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
613
      CheckContiguous({U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
614
615
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    }
616
    SpMMHetero(op, reduce_op, graph.sptr(), U_vec, E_vec, &V_vec, &Arg_vec);
617
618
  });

619
620
621
622
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
623
624
625
626
627
628
629
    NDArray lhs = args[2];
    NDArray rhs = args[3];
    NDArray out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
630
631
632
633
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
634

635
636
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
637
638
        {lhs_target, rhs_target, 1},
        {lhs, rhs, out},
639
        {"U_data", "E_data", "V_data"});
640
    SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target);
641
642
  });

643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_lhs = args[2];
    List<Value> list_rhs = args[3];
    List<Value> list_out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    std::vector<NDArray> vec_lhs;
    std::vector<NDArray> vec_rhs;
    std::vector<NDArray> vec_out;

    vec_lhs.reserve(list_lhs.size());
    vec_rhs.reserve(list_rhs.size());
    vec_out.reserve(list_out.size());

    for (Value val : list_lhs) {
      vec_lhs.push_back(val->data);
    }
    for (Value val : list_rhs) {
      vec_rhs.push_back(val->data);
    }
    for (Value val : list_out) {
      vec_out.push_back(val->data);
    }
    SDDMMHetero(op, graph.sptr(), vec_lhs, vec_rhs, vec_out, lhs_target, rhs_target);
  });

673
674
675
676
677
678
679
680
681
682
683
684
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSegmentReduce")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string op = args[0];
    NDArray feat = args[1];
    NDArray offsets = args[2];
    NDArray out = args[3];
    NDArray arg = args[4];
    CheckCtx(feat->ctx, {feat, offsets, out}, {"feat", "offsets", "out"});
    CheckContiguous({feat, offsets, out}, {"feat", "offsets", "out"});
    SegmentReduceDispatch(op, feat, offsets, out, arg);
  });

685
686
687
688
689
690
691
692
693
694
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelScatterAdd")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray idx = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    ScatterAddDispatch(feat, idx, out);
  });

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelUpdateGradMinMaxHetero")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_feat = args[2];
    List<Value> list_idx = args[3];
    List<Value> list_idx_etype = args[4];
    List<Value> list_out = args[5];
    std::vector<NDArray> vec_feat = ListValueToVector<NDArray>(list_feat);
    std::vector<NDArray> vec_idx = ListValueToVector<NDArray>(list_idx);
    std::vector<NDArray> vec_idx_etype = ListValueToVector<NDArray>(list_idx_etype);
    std::vector<NDArray> vec_out = ListValueToVector<NDArray>(list_out);
    // CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    // CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    UpdateGradMinMaxDispatchHetero(graph.sptr(), op, vec_feat, vec_idx, vec_idx_etype, &vec_out);
  });

712
713
714
715
716
717
718
719
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelBwdSegmentCmp")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray arg = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, arg, out}, {"feat", "arg", "out"});
    CheckContiguous({feat, arg, out}, {"feat", "arg", "out"});
    BackwardSegmentCmpDispatch(feat, arg, out);
Zhi Lin's avatar
Zhi Lin committed
720
721
  });

722
723
724
725
726
727
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGetEdgeMapping")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    *rv = GetEdgeMapping(graph);
  });

728
729
730
731
732
733
734
735
736
737
/*!
 * \brief Sparse matrix multiplication with graph interface.
 *
 * \param A_ref The left operand.
 * \param A_weights The edge weights of graph A.
 * \param B_ref The right operand.
 * \param B_weights The edge weights of graph B.
 * \param num_vtypes The number of vertex types of the graph to be returned.
 * \return A pair consisting of the new graph as well as its edge weights.
 */
738
739
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];
    NDArray B_weights = args[3];
    int num_vtypes = args[4];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "The first graph must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "The second graph must have only one edge type.";
    const auto A_csr = A->GetCSRMatrix(0);
    const auto B_csr = B->GetCSRMatrix(0);
    auto result = CSRMM(A_csr, A_weights, B_csr, B_weights);

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
756
757
758
759
760
761
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRSum")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    List<HeteroGraphRef> A_refs = args[0];
    List<Value> A_weights = args[1];

    std::vector<NDArray> weights = ListValueToVector<NDArray>(A_weights);
    std::vector<CSRMatrix> mats;
    mats.reserve(A_refs.size());
    int num_vtypes = 0;
    for (auto A_ref : A_refs) {
      const HeteroGraphPtr A = A_ref.sptr();
      CHECK_EQ(A->NumEdgeTypes(), 1) << "Graphs must have only one edge type.";
      mats.push_back(A->GetCSRMatrix(0));
      if (num_vtypes == 0)
        num_vtypes = A->NumVertexTypes();
    }
776
    auto result = CSRSum(mats, weights);
777
778
779

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
780
781
782
783
784
785
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMask")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    const CSRMatrix& A_csr = A->GetCSRMatrix(0);
    const COOMatrix& B_coo = B->GetCOOMatrix(0);
    CHECK_EQ(A_csr.num_rows, B_coo.num_rows) <<
      "Both graphs must have the same number of nodes.";
    CHECK_EQ(A_csr.num_cols, B_coo.num_cols) <<
      "Both graphs must have the same number of nodes.";

    NDArray result;
    ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
      result = aten::CSRGetData<DType>(A_csr, B_coo.row, B_coo.col, A_weights, 0.);
    });
805
806
807
    *rv = result;
  });

Zhi Lin's avatar
Zhi Lin committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
#ifdef USE_TVM
DGL_REGISTER_GLOBAL("sparse._CAPI_FG_LoadModule")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string path = args[0];
    dgl::featgraph::LoadFeatGraphModule(path);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_FG_SDDMMTreeReduction")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    NDArray lhs = args[1];
    NDArray rhs = args[2];
    NDArray out = args[3];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    // auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    // const dgl_type_t src_vtype = pair.first;
    // const dgl_type_t dst_vtype = pair.second;
    // CheckShape(
    //     {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
    //     {lhs_target, rhs_target, 1},
    //     {lhs, rhs, out},
    //     {"U_data", "E_data", "V_data"});
    COOMatrix coo = graph.sptr()->GetCOOMatrix(0);
833
834
835
836
837
838
    dgl::featgraph::SDDMMTreeReduction(
      DLPackConvert::ToDLPack(coo.row),
      DLPackConvert::ToDLPack(coo.col),
      DLPackConvert::ToDLPack(lhs),
      DLPackConvert::ToDLPack(rhs),
      DLPackConvert::ToDLPack(out));
Zhi Lin's avatar
Zhi Lin committed
839
840
841
  });
#endif  // USE_TVM

842
843
}  // namespace aten
}  // namespace dgl