kernel.cc 31.6 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

Zhi Lin's avatar
Zhi Lin committed
9
10
11
12
#ifdef USE_TVM
#include <featgraph.h>
#endif  // USE_TVM

13
14
#include "kernel_decl.h"
#include "../c_api_common.h"
15
#include "./check.h"
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
31
          std::vector<NDArray> out_aux) {
32
  // TODO(zihao): format tuning
33
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
34
35
36
37
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
38
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
39
        if (format == SparseFormat::kCSC) {
40
          SpMMCsr<XPU, IdType, bits>(
41
42
43
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
44
          SpMMCoo<XPU, IdType, bits>(
45
46
47
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
48
          LOG(FATAL) << "SpMM only supports CSC and COO formats";
49
50
51
52
53
54
        }
      });
    });
  });
}

Israt Nisa's avatar
Israt Nisa committed
55
56
57

/*! \brief Generalized segmented dense Matrix-Matrix Multiplication. */
void SegmentMM(const NDArray A,
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
               const NDArray B,
               NDArray C,
               const NDArray seglen_A,
               bool A_trans, bool B_trans) {
  CHECK_EQ(A->ndim, 2) << "segment_mm expects a 2D tensor for the first input.";
  CHECK_EQ(B->ndim, 3) << "segment_mm expects a 3D tensor for the second input.";
  CHECK(!A_trans);
  if (B_trans) {
    CHECK_EQ(A->shape[1], B->shape[2])
      << "segment_mm expects A.shape[1] == B.shape[2] when B_trans=True";
  } else {
    CHECK_EQ(A->shape[1], B->shape[1]) << "segment_mm expects A.shape[1] == B.shape[1]";
  }
  CHECK_EQ(B->shape[0], seglen_A.NumElements())
    << "segment_mm expects len(seglen_A) == B.shape[0]";
  CHECK_EQ(seglen_A->ctx.device_type, kDLCPU)
    << "segment_mm expects seglen_A to be on CPU.";
  CHECK(A->ctx == B->ctx) << "segment_mm expects A and B to be of the same device";
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "SegmentMM", {
Israt Nisa's avatar
Israt Nisa committed
77
78
    ATEN_ID_TYPE_SWITCH(seglen_A->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        SegmentMM<XPU, IdType, bits>(A, B, C, seglen_A, A_trans, B_trans);
      });
    });
  });
}

void SegmentMMBackwardB(const NDArray A,
                        const NDArray dC,
                        NDArray dB,
                        const NDArray seglen) {
  CHECK_EQ(A->ndim, 2) << "segment_mm_backward operator expects a 2D tensor for the first input.";
  CHECK_EQ(dC->ndim, 2)
    << "segment_mm_backward operator expects a 2D tensor for the second input.";
  CHECK_EQ(seglen->ctx.device_type, kDLCPU)
    << "segment_mm expects seglen to be on CPU.";
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "SegmentMMBackwardB", {
    ATEN_ID_TYPE_SWITCH(seglen->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
        SegmentMMBackwardB<XPU, IdType, bits>(A, dC, dB, seglen);
Israt Nisa's avatar
Israt Nisa committed
98
99
100
101
102
103
104
105
      });
    });
  });
}


/*! \brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
void GatherMM(const NDArray A,
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
              const NDArray B,
              NDArray C,
              const NDArray idx_a,
              const NDArray idx_b) {
  CHECK_EQ(A->ndim, 2) << "gather_mm operator expects a 2D tensor for the first input.";
  CHECK_EQ(B->ndim, 3) << "gather_mm operator expects a 3D tensor for the second input.";
  CHECK(A->ctx == B->ctx)
    << "gather_mm expects all arguments to be on the same device.";
  if (aten::IsNullArray(idx_a)) {
    CHECK_EQ(A->shape[0], idx_b->shape[0])
      << "gather_mm expects len(idx_b) == A.shape[0] when idx_a is None.";
    CHECK(A->ctx == idx_b->ctx)
      << "gather_mm expects all arguments to be on the same device.";
  } else if (aten::IsNullArray(idx_b)) {
    CHECK_EQ(B->shape[0], idx_a->shape[0])
      << "gather_mm expects len(idx_a) == B.shape[0] when idx_b is None.";
    CHECK(A->ctx == idx_a->ctx)
      << "gather_mm expects all arguments to be on the same device.";
  } else {
    CHECK_EQ(idx_a->shape[0], idx_b->shape[0])
      << "gather_mm expects len(idx_a) == len(idx_b) when both idx_a and idx_b are given.";
    CHECK(A->ctx == idx_a->ctx && A->ctx == idx_b->ctx)
      << "gather_mm expects all arguments to be on the same device.";
  }
  const auto idtype = aten::IsNullArray(idx_a)? idx_b->dtype : idx_a->dtype;
Israt Nisa's avatar
Israt Nisa committed
131
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "GatherMM", {
132
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
Israt Nisa's avatar
Israt Nisa committed
133
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
134
        GatherMM<XPU, IdType, bits>(A, B, C, idx_a, idx_b);
Israt Nisa's avatar
Israt Nisa committed
135
136
137
138
139
140
141
      });
    });
  });
}


/*! \brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
void GatherMMScatter(const NDArray A,
                     const NDArray B,
                     NDArray C,
                     const NDArray idx_a,
                     const NDArray idx_b,
                     const NDArray idx_c) {
  CHECK_EQ(A->ndim, 2) << "gather_mm_scatter expects a 2D tensor for the first input.";
  CHECK(A->ctx == B->ctx)
    << "gather_mm_scatter expects all arguments to be on the same device.";
  if (!aten::IsNullArray(idx_c))
    CHECK(A->ctx == idx_c->ctx)
      << "gather_mm_scatter expects all arguments to be on the same device.";
  if (aten::IsNullArray(idx_a) && !aten::IsNullArray(idx_b)) {
    CHECK_EQ(A->shape[0], idx_b->shape[0])
      << "gather_mm_scatter expects len(idx_b) == A.shape[0] when idx_a is None.";
    CHECK(A->ctx == idx_b->ctx)
      << "gather_mm_scatter expects all arguments to be on the same device.";
  } else if (aten::IsNullArray(idx_b) && !aten::IsNullArray(idx_a)) {
    CHECK_EQ(B->shape[0], idx_a->shape[0])
      << "gather_mm_scatter expects len(idx_a) == B.shape[0] when idx_b is None.";
    CHECK(A->ctx == idx_a->ctx)
      << "gather_mm_scatter expects all arguments to be on the same device.";
  } else if (!aten::IsNullArray(idx_b) && !aten::IsNullArray(idx_a)) {
    CHECK_EQ(idx_a->shape[0], idx_b->shape[0])
      << "gather_mm_scatter expects len(idx_a) == len(idx_b) "
      << "when both idx_a and idx_b are given.";
    CHECK(A->ctx == idx_a->ctx && A->ctx == idx_b->ctx)
      << "gather_mm_scatter expects all arguments to be on the same device.";
  }
Israt Nisa's avatar
Israt Nisa committed
171
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "GatherMM", {
172
    ATEN_ID_TYPE_SWITCH(idx_c->dtype, IdType, {
Israt Nisa's avatar
Israt Nisa committed
173
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
174
        GatherMMScatter<XPU, IdType, bits>(A, B, C, idx_a, idx_b, idx_c);
Israt Nisa's avatar
Israt Nisa committed
175
176
177
178
179
180
      });
    });
  });
}


181
182
183
/*! \brief Generalized Sparse Matrix-Matrix Multiplication with hetero-graph support. */
void SpMMHetero(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
184
185
186
187
          const std::vector<NDArray>& ufeat_vec,
          const std::vector<NDArray>& efeat_vec,
          std::vector<NDArray>* out,
          std::vector<std::vector<NDArray>>* out_aux) {
188
189
190
191
192
193
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);

  std::vector<CSRMatrix> vec_graph;
  std::vector<dgl_type_t> ufeat_eid;
  std::vector<dgl_type_t> efeat_eid;
  std::vector<dgl_type_t> out_eid;
194
195
196
  auto pair = graph->meta_graph()->FindEdge(0);  // first etype
  NDArray ufeat_etype0 = (ufeat_vec.size() == 0) ? NullArray() : ufeat_vec[pair.first];
  NDArray efeat_etype0 = (efeat_vec.size() == 0) ? NullArray() : efeat_vec[0];
197
198
199
200
201
202
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
    vec_graph.push_back(graph->GetCSCMatrix(etype));
    auto pair = graph->meta_graph()->FindEdge(etype);
    ufeat_eid.push_back(pair.first);
    efeat_eid.push_back(etype);
    out_eid.push_back(pair.second);
203
204
205
206
    if (ufeat_etype0->shape[1] != ufeat_vec[pair.first]->shape[1])
      LOG(FATAL) << "Column width of the input node features of all etypes must be same.";
    if (efeat_etype0->shape[1] != efeat_vec[etype]->shape[1])
      LOG(FATAL) << "Column width of the input edge features of all etypes must be same.";
207
  }
208
  const auto& bcast = CalcBcastOff(op, ufeat_etype0, efeat_etype0);
209

210
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
211
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
212
      ATEN_FLOAT_BITS_SWITCH((*out)[out_eid[0]]->dtype, bits, "Feature data", {
213
214
215
216
217
218
        if (format == SparseFormat::kCSC) {
          SpMMCsrHetero<XPU, IdType, bits>(
              op, reduce, bcast, vec_graph,
              ufeat_vec, efeat_vec, out, out_aux,
              ufeat_eid, out_eid);
        } else {
219
220
221
          // TODO(Israt): Add support for COO format
          LOG(FATAL) << "SpMM only supports CSC format for graphs with number "
                     << "of relation types > 1";
222
223
224
225
226
227
228
        }
      });
    });
  });
}


229
230
231
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
232
233
           NDArray lhs,
           NDArray rhs,
234
           NDArray out,
235
           int lhs_target,
236
           int rhs_target) {
237
  // TODO(zihao): format tuning
238
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
239
  const auto &bcast = CalcBcastOff(op, lhs, rhs);
240
241
242

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
243
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
244
        if (format == SparseFormat::kCSR) {
245
          SDDMMCsr<XPU, IdType, bits>(
246
              op, bcast, graph->GetCSRMatrix(0),
247
              lhs, rhs, out, lhs_target, rhs_target);
248
        } else if (format == SparseFormat::kCOO) {
249
          SDDMMCoo<XPU, IdType, bits>(
250
              op, bcast, graph->GetCOOMatrix(0),
251
              lhs, rhs, out, lhs_target, rhs_target);
252
        } else {
253
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
254
255
256
257
258
259
        }
      });
    });
  });
}

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*!
 * \brief Find the src/dst/etype id based on the target 'u', 'v' or 'e'.
 *
 * \param graph The input graph.
 * \param target 'u', 'v' or 'e'. The target of the lhs or rhs data of an etype.
 * \param etype Relation type of the input graph.
 */
int get_typeid_by_target(HeteroGraphPtr graph, int target, dgl_type_t etype) {
  auto pair = graph->meta_graph()->FindEdge(etype);
  if (target == 0)
    return pair.first;
  if (target == 2)
    return pair.second;
  return etype;
}

276
277
278
279
280
281
282
283
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMMHetero(const std::string& op,
           HeteroGraphPtr graph,
           std::vector<NDArray> lhs,
           std::vector<NDArray> rhs,
           std::vector<NDArray> out,
           int lhs_target,
           int rhs_target) {
284
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
285
286
287
288

  std::vector<dgl_type_t> lhs_eid;
  std::vector<dgl_type_t> rhs_eid;
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
289
290
    lhs_eid.push_back(get_typeid_by_target(graph, lhs_target, etype));
    rhs_eid.push_back(get_typeid_by_target(graph, rhs_target, etype));
291
292
293
  }
  const auto &bcast = CalcBcastOff(op, lhs[lhs_eid[0]], rhs[rhs_eid[0]]);

294
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
295
296
297
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out[rhs_eid[0]]->dtype, bits, "Feature data", {
        if (format == SparseFormat::kCSR) {
298
299
300
301
          std::vector<CSRMatrix> vec_csr;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_csr.push_back(graph->GetCSRMatrix(etype));
          }
302
303
304
305
          SDDMMCsrHetero<XPU, IdType, bits>(
              op, bcast, vec_csr,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
306
307
308
309
310
311
312
313
314
        } else if (format == SparseFormat::kCOO) {
          std::vector<COOMatrix> vec_coo;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_coo.push_back(graph->GetCOOMatrix(etype));
          }
          SDDMMCooHetero<XPU, IdType, bits>(
              op, bcast, vec_coo,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
315
        } else {
316
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
317
318
319
320
321
322
        }
      });
    });
  });
}

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

/*! \brief Generalized Edge_softmax op for forward */
void Edge_softmax_forward(const std::string& op,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out) {
  // TODO(zhejiang): add gpu op for edge_softmax
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "edge_softmax out data", {
        Edge_softmax_csr_forward<XPU, IdType, bits>(
          op, bcast, graph->GetCSCMatrix(0), ufeat, efeat, out);
      });
    });
  });
}


/*! \brief Generalized Edge_softmax op for backward */
void Edge_softmax_backward(const std::string& op,
          HeteroGraphPtr graph,
          NDArray out,
          NDArray sds,
          NDArray back_out,
          NDArray ufeat) {
  // TODO(zhejiang): add gpu op for edge_softmax
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
  const auto& bcast = CalcBcastOff(op, ufeat, sds);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax_back", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "edge_softmax out data_back", {
        Edge_softmax_csr_backward<XPU, IdType, bits>(
          op, bcast, graph->GetCSCMatrix(0), out, sds, back_out);
      });
    });
  });
}


367
NDArray GetEdgeMapping(HeteroGraphRef graph) {
368
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
369
370
371
372
373
374
375
  if (format == SparseFormat::kCSC) {
    return graph.sptr()->GetCSCMatrix(0).data;
  } else {
    return NullArray();
  }
}

376
377
378
379
380
381
382
383
/*! \brief Segment reduce dispatch function. */
void SegmentReduceDispatch(const std::string& op,
                           NDArray feat,
                           NDArray offsets,
                           NDArray out,
                           NDArray arg) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "SegmentReduce", {
    ATEN_ID_TYPE_SWITCH(offsets->dtype, IdType, {
384
385
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
          SegmentReduce<XPU, IdType, bits>(op, feat, offsets, out, arg);
386
387
388
389
390
      });
    });
  });
}

391
392
393
394
395
396
397
398
399
400
401
/*! \brief Scatter Add (on first dimension) dispatch function. */
void ScatterAddDispatch(NDArray feat, NDArray idx, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        ScatterAdd<XPU, IdType, bits>(feat, idx, out);
      });
    });
  });
}

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/*! \brief Update gradients (reduce op max/min) dispatch function on heterogeneous graph. */
void UpdateGradMinMaxDispatchHetero(const HeteroGraphPtr& graph,
                        const std::string& op,
                        const std::vector<NDArray>& feat,
                        const std::vector<NDArray>& idx,
                        const std::vector<NDArray>& idx_etype,
                        std::vector<NDArray>* out) {
  auto pair = graph->meta_graph()->FindEdge(0);  // checking the first etype
  auto src_id = pair.first;
  ATEN_XPU_SWITCH_CUDA(feat[src_id]->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx[src_id]->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat[src_id]->dtype, bits, "Feature data", {
        UpdateGradMinMax_hetero<XPU, IdType, bits>(graph, op, feat, idx, idx_etype, out);
      });
    });
  });
}

420
421
422
423
/*! \brief Backward segment cmp dispatch function.*/
void BackwardSegmentCmpDispatch(NDArray feat, NDArray arg, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "BackwardSegmentCmp", {
    ATEN_ID_TYPE_SWITCH(arg->dtype, IdType, {
424
425
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        BackwardSegmentCmp<XPU, IdType, bits>(feat, arg, out);
426
427
428
429
430
      });
    });
  });
}

431
432
433
434
435
std::pair<CSRMatrix, NDArray> CSRMM(
    CSRMatrix A,
    NDArray A_weights,
    CSRMatrix B,
    NDArray B_weights) {
436
437
438
  CHECK_EQ(A.num_cols, B.num_rows) <<
    "The number of nodes of destination node type of the first graph must be the "
    "same as the number of nodes of source node type of the second graph.";
439
440
441
442
443
444
445
446
447
  CheckCtx(
      A.indptr->ctx,
      {A_weights, B_weights},
      {"A's edge weights", "B's edge weights"});
  CHECK_EQ(A.indptr->ctx, B.indptr->ctx) << "Device of two graphs must match.";
  CHECK_EQ(A.indptr->dtype, B.indptr->dtype) << "ID types of two graphs must match.";
  CHECK_EQ(A_weights->dtype, B_weights->dtype) << "Data types of two edge weights must match.";

  std::pair<CSRMatrix, NDArray> ret;
448
  ATEN_XPU_SWITCH_CUDA(A.indptr->ctx.device_type, XPU, "CSRMM", {
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    ATEN_ID_TYPE_SWITCH(A.indptr->dtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
        ret = CSRMM<XPU, IdType, DType>(A, A_weights, B, B_weights);
      });
    });
  });
  return ret;
}

std::pair<CSRMatrix, NDArray> CSRSum(
    const std::vector<CSRMatrix>& A,
    const std::vector<NDArray>& A_weights) {
  CHECK(A.size() > 0) << "The list of graphs must not be empty.";
  CHECK_EQ(A.size(), A_weights.size()) <<
    "The list of edge weights must have the same length as the list of graphs.";
464
465
466
467
468
  const auto ctx = A[0].indptr->ctx;
  const auto idtype = A[0].indptr->dtype;
  const auto dtype = A_weights[0]->dtype;
  const auto num_rows = A[0].num_rows;
  const auto num_cols = A[0].num_cols;
469
470
471
472
473
474
475
476
477
  for (size_t i = 0; i < A.size(); ++i) {
    CHECK_EQ(A[i].indptr->ctx, ctx) << "The devices of all graphs must be equal.";
    CHECK_EQ(A[i].indptr->dtype, idtype) << "The ID types of all graphs must be equal.";
    CHECK_EQ(A[i].indices->shape[0], A_weights[i]->shape[0]) <<
      "Shape of edge weights does not match the number of edges.";
    CHECK_EQ(A_weights[i]->ctx, ctx) <<
      "The devices of edge weights must be the same as that of the graphs.";
    CHECK_EQ(A_weights[i]->dtype, dtype) <<
      "The data types of all edge weights must be equal.";
478
479
    CHECK_EQ(A[i].num_rows, num_rows) << "Graphs must have the same number of nodes.";
    CHECK_EQ(A[i].num_cols, num_cols) << "Graphs must have the same number of nodes.";
480
481
482
  }

  std::pair<CSRMatrix, NDArray> ret;
483
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "CSRSum", {
484
485
486
487
488
489
490
491
492
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(dtype, DType, "Edge weights", {
        ret = CSRSum<XPU, IdType, DType>(A, A_weights);
      });
    });
  });
  return ret;
}

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
516
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE});
517
518
  });

Israt Nisa's avatar
Israt Nisa committed
519
520
521
522
523
524
525
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGATHERMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray B = args[1];
    NDArray C = args[2];
    NDArray idx_a = args[3];
    NDArray idx_b = args[4];
526
    GatherMM(A, B, C, idx_a, idx_b);
Israt Nisa's avatar
Israt Nisa committed
527
528
529
530
531
532
533
534
535
536
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGATHERMMSCATTER")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray B = args[1];
    NDArray C = args[2];
    NDArray idx_a = args[3];
    NDArray idx_b = args[4];
    NDArray idx_c = args[5];
537
    GatherMMScatter(A, B, C, idx_a, idx_b, idx_c);
Israt Nisa's avatar
Israt Nisa committed
538
539
540
541
542
543
544
545
546
547
548
549
550
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSEGMENTMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray B = args[1];
    NDArray C = args[2];
    NDArray seglen_A = args[3];
    bool A_trans = args[4];
    bool B_trans = args[5];
    SegmentMM(A, B, C, seglen_A, A_trans, B_trans);
  });

551
552
553
554
555
556
557
558
559
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSEGMENTMMBackwardB")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray dC = args[1];
    NDArray dB = args[2];
    NDArray seglen = args[3];
    SegmentMMBackwardB(A, dC, dB, seglen);
  });

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_forward")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    NDArray U = args[2];
    NDArray E = args[3];
    NDArray V = args[4];
    Edge_softmax_forward(op, graph.sptr(), U, E, V);
});

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_backward")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    NDArray out = args[2];
    NDArray sds = args[3];
    NDArray back_out = args[4];
    NDArray ufeat = args[5];
    Edge_softmax_backward(op, graph.sptr(), out, sds, back_out, ufeat);
});

581
582
583
584
585
586
587
588
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    List<Value> list_U = args[3];
    List<Value> list_E = args[4];
    List<Value> list_V = args[5];
589
590
591
592
593
594
595
    List<Value> list_ArgU = args[6];
    List<Value> list_ArgE = args[7];
    List<Value> list_ArgU_ntype = args[8];
    List<Value> list_ArgE_etype = args[9];
    std::vector<std::vector<NDArray>> Arg_vec;  // ArgU + ArgE
    for (int i = 0; i < 4; ++i) {  // ArgU + ArgE + ArgU_ntype + ArgE_etype
      Arg_vec.push_back(std::vector<NDArray>());
596
    }
597
598
599
600
601
602
603
    std::vector<NDArray> U_vec = ListValueToVector<NDArray>(list_U);
    std::vector<NDArray> V_vec = ListValueToVector<NDArray>(list_V);
    std::vector<NDArray> E_vec = ListValueToVector<NDArray>(list_E);
    Arg_vec[0] = ListValueToVector<NDArray>(list_ArgU);
    Arg_vec[1] = ListValueToVector<NDArray>(list_ArgE);
    Arg_vec[2] = ListValueToVector<NDArray>(list_ArgU_ntype);
    Arg_vec[3] = ListValueToVector<NDArray>(list_ArgE_etype);
604
605
606
607
608
609
    for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
      auto pair = graph->meta_graph()->FindEdge(etype);
      const dgl_id_t src_id = pair.first;
      const dgl_id_t dst_id = pair.second;
      NDArray U = (U_vec.size() == 0) ? NullArray() : U_vec[src_id];
      NDArray E = (E_vec.size() == 0) ? NullArray() : E_vec[etype];
610
      CheckCtx(graph->Context(), {U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
611
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
612
      CheckContiguous({U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
613
614
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    }
615
    SpMMHetero(op, reduce_op, graph.sptr(), U_vec, E_vec, &V_vec, &Arg_vec);
616
617
  });

618
619
620
621
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
622
623
624
625
626
627
628
    NDArray lhs = args[2];
    NDArray rhs = args[3];
    NDArray out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
629
630
631
632
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
633

634
635
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
636
637
        {lhs_target, rhs_target, 1},
        {lhs, rhs, out},
638
        {"U_data", "E_data", "V_data"});
639
    SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target);
640
641
  });

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_lhs = args[2];
    List<Value> list_rhs = args[3];
    List<Value> list_out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    std::vector<NDArray> vec_lhs;
    std::vector<NDArray> vec_rhs;
    std::vector<NDArray> vec_out;

    vec_lhs.reserve(list_lhs.size());
    vec_rhs.reserve(list_rhs.size());
    vec_out.reserve(list_out.size());

    for (Value val : list_lhs) {
      vec_lhs.push_back(val->data);
    }
    for (Value val : list_rhs) {
      vec_rhs.push_back(val->data);
    }
    for (Value val : list_out) {
      vec_out.push_back(val->data);
    }
    SDDMMHetero(op, graph.sptr(), vec_lhs, vec_rhs, vec_out, lhs_target, rhs_target);
  });

672
673
674
675
676
677
678
679
680
681
682
683
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSegmentReduce")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string op = args[0];
    NDArray feat = args[1];
    NDArray offsets = args[2];
    NDArray out = args[3];
    NDArray arg = args[4];
    CheckCtx(feat->ctx, {feat, offsets, out}, {"feat", "offsets", "out"});
    CheckContiguous({feat, offsets, out}, {"feat", "offsets", "out"});
    SegmentReduceDispatch(op, feat, offsets, out, arg);
  });

684
685
686
687
688
689
690
691
692
693
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelScatterAdd")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray idx = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    ScatterAddDispatch(feat, idx, out);
  });

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelUpdateGradMinMaxHetero")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_feat = args[2];
    List<Value> list_idx = args[3];
    List<Value> list_idx_etype = args[4];
    List<Value> list_out = args[5];
    std::vector<NDArray> vec_feat = ListValueToVector<NDArray>(list_feat);
    std::vector<NDArray> vec_idx = ListValueToVector<NDArray>(list_idx);
    std::vector<NDArray> vec_idx_etype = ListValueToVector<NDArray>(list_idx_etype);
    std::vector<NDArray> vec_out = ListValueToVector<NDArray>(list_out);
    // CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    // CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    UpdateGradMinMaxDispatchHetero(graph.sptr(), op, vec_feat, vec_idx, vec_idx_etype, &vec_out);
  });

711
712
713
714
715
716
717
718
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelBwdSegmentCmp")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray arg = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, arg, out}, {"feat", "arg", "out"});
    CheckContiguous({feat, arg, out}, {"feat", "arg", "out"});
    BackwardSegmentCmpDispatch(feat, arg, out);
Zhi Lin's avatar
Zhi Lin committed
719
720
  });

721
722
723
724
725
726
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGetEdgeMapping")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    *rv = GetEdgeMapping(graph);
  });

727
728
729
730
731
732
733
734
735
736
/*!
 * \brief Sparse matrix multiplication with graph interface.
 *
 * \param A_ref The left operand.
 * \param A_weights The edge weights of graph A.
 * \param B_ref The right operand.
 * \param B_weights The edge weights of graph B.
 * \param num_vtypes The number of vertex types of the graph to be returned.
 * \return A pair consisting of the new graph as well as its edge weights.
 */
737
738
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];
    NDArray B_weights = args[3];
    int num_vtypes = args[4];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "The first graph must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "The second graph must have only one edge type.";
    const auto A_csr = A->GetCSRMatrix(0);
    const auto B_csr = B->GetCSRMatrix(0);
    auto result = CSRMM(A_csr, A_weights, B_csr, B_weights);

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
755
756
757
758
759
760
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRSum")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    List<HeteroGraphRef> A_refs = args[0];
    List<Value> A_weights = args[1];

    std::vector<NDArray> weights = ListValueToVector<NDArray>(A_weights);
    std::vector<CSRMatrix> mats;
    mats.reserve(A_refs.size());
    int num_vtypes = 0;
    for (auto A_ref : A_refs) {
      const HeteroGraphPtr A = A_ref.sptr();
      CHECK_EQ(A->NumEdgeTypes(), 1) << "Graphs must have only one edge type.";
      mats.push_back(A->GetCSRMatrix(0));
      if (num_vtypes == 0)
        num_vtypes = A->NumVertexTypes();
    }
775
    auto result = CSRSum(mats, weights);
776
777
778

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
779
780
781
782
783
784
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMask")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    const CSRMatrix& A_csr = A->GetCSRMatrix(0);
    const COOMatrix& B_coo = B->GetCOOMatrix(0);
    CHECK_EQ(A_csr.num_rows, B_coo.num_rows) <<
      "Both graphs must have the same number of nodes.";
    CHECK_EQ(A_csr.num_cols, B_coo.num_cols) <<
      "Both graphs must have the same number of nodes.";

    NDArray result;
    ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
      result = aten::CSRGetData<DType>(A_csr, B_coo.row, B_coo.col, A_weights, 0.);
    });
804
805
806
    *rv = result;
  });

Zhi Lin's avatar
Zhi Lin committed
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
#ifdef USE_TVM
DGL_REGISTER_GLOBAL("sparse._CAPI_FG_LoadModule")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string path = args[0];
    dgl::featgraph::LoadFeatGraphModule(path);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_FG_SDDMMTreeReduction")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    NDArray lhs = args[1];
    NDArray rhs = args[2];
    NDArray out = args[3];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    // auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    // const dgl_type_t src_vtype = pair.first;
    // const dgl_type_t dst_vtype = pair.second;
    // CheckShape(
    //     {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
    //     {lhs_target, rhs_target, 1},
    //     {lhs, rhs, out},
    //     {"U_data", "E_data", "V_data"});
    COOMatrix coo = graph.sptr()->GetCOOMatrix(0);
    dgl::featgraph::SDDMMTreeReduction(coo.row.ToDLPack(), coo.col.ToDLPack(),
                                       lhs.ToDLPack(), rhs.ToDLPack(), out.ToDLPack());
  });
#endif  // USE_TVM

837
838
}  // namespace aten
}  // namespace dgl