"src/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "b75b204a584e29ebf4e80a61be11458e9ed56e3e"
kernel.cc 20 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

Zhi Lin's avatar
Zhi Lin committed
9
10
11
12
#ifdef USE_TVM
#include <featgraph.h>
#endif  // USE_TVM

13
14
#include "kernel_decl.h"
#include "../c_api_common.h"
15
#include "./check.h"
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
31
          std::vector<NDArray> out_aux) {
32
  // TODO(zihao): format tuning
33
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
34
35
36
37
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
38
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
39
        if (format == SparseFormat::kCSC) {
40
          SpMMCsr<XPU, IdType, bits>(
41
42
43
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
44
          SpMMCoo<XPU, IdType, bits>(
45
46
47
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
48
          LOG(FATAL) << "SpMM only supports CSC and COO formats";
49
50
51
52
53
54
        }
      });
    });
  });
}

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/*! \brief Generalized Sparse Matrix-Matrix Multiplication with hetero-graph support. */
void SpMMHetero(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          std::vector<NDArray> ufeat_vec,
          std::vector<NDArray> efeat_vec,
          std::vector<NDArray> out,
          std::vector<NDArray> out_aux) {
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);

  std::vector<CSRMatrix> vec_graph;
  std::vector<dgl_type_t> ufeat_eid;
  std::vector<dgl_type_t> efeat_eid;
  std::vector<dgl_type_t> out_eid;
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
    vec_graph.push_back(graph->GetCSCMatrix(etype));
    auto pair = graph->meta_graph()->FindEdge(etype);
    ufeat_eid.push_back(pair.first);
    efeat_eid.push_back(etype);
    out_eid.push_back(pair.second);
  }
  NDArray efeat = (efeat_vec.size() == 0) ? NullArray() : efeat_vec[efeat_eid[0]];
  NDArray ufeat = (ufeat_vec.size() == 0) ? NullArray() : ufeat_vec[ufeat_eid[0]];
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

79
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
80
81
82
83
84
85
86
87
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out[out_eid[0]]->dtype, bits, "Feature data", {
        if (format == SparseFormat::kCSC) {
          SpMMCsrHetero<XPU, IdType, bits>(
              op, reduce, bcast, vec_graph,
              ufeat_vec, efeat_vec, out, out_aux,
              ufeat_eid, out_eid);
        } else {
88
89
90
          // TODO(Israt): Add support for COO format
          LOG(FATAL) << "SpMM only supports CSC format for graphs with number "
                     << "of relation types > 1";
91
92
93
94
95
96
97
        }
      });
    });
  });
}


98
99
100
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
101
102
           NDArray lhs,
           NDArray rhs,
103
           NDArray out,
104
           int lhs_target,
105
           int rhs_target) {
106
  // TODO(zihao): format tuning
107
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
108
  const auto &bcast = CalcBcastOff(op, lhs, rhs);
109
110
111

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
112
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
113
        if (format == SparseFormat::kCSR) {
114
          SDDMMCsr<XPU, IdType, bits>(
115
              op, bcast, graph->GetCSRMatrix(0),
116
              lhs, rhs, out, lhs_target, rhs_target);
117
        } else if (format == SparseFormat::kCOO) {
118
          SDDMMCoo<XPU, IdType, bits>(
119
              op, bcast, graph->GetCOOMatrix(0),
120
              lhs, rhs, out, lhs_target, rhs_target);
121
        } else {
122
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
123
124
125
126
127
128
        }
      });
    });
  });
}

129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*!
 * \brief Find the src/dst/etype id based on the target 'u', 'v' or 'e'.
 *
 * \param graph The input graph.
 * \param target 'u', 'v' or 'e'. The target of the lhs or rhs data of an etype.
 * \param etype Relation type of the input graph.
 */
int get_typeid_by_target(HeteroGraphPtr graph, int target, dgl_type_t etype) {
  auto pair = graph->meta_graph()->FindEdge(etype);
  if (target == 0)
    return pair.first;
  if (target == 2)
    return pair.second;
  return etype;
}


147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMMHetero(const std::string& op,
           HeteroGraphPtr graph,
           std::vector<NDArray> lhs,
           std::vector<NDArray> rhs,
           std::vector<NDArray> out,
           int lhs_target,
           int rhs_target) {
  // TODO(Israt): change it to COO_CODE
  SparseFormat format = graph->SelectFormat(0, CSR_CODE);

  std::vector<CSRMatrix> vec_csr;
  std::vector<dgl_type_t> lhs_eid;
  std::vector<dgl_type_t> rhs_eid;
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
    vec_csr.push_back(graph->GetCSRMatrix(etype));
163
164
    lhs_eid.push_back(get_typeid_by_target(graph, lhs_target, etype));
    rhs_eid.push_back(get_typeid_by_target(graph, rhs_target, etype));
165
166
167
  }
  const auto &bcast = CalcBcastOff(op, lhs[lhs_eid[0]], rhs[rhs_eid[0]]);

168
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
169
170
171
172
173
174
175
176
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out[rhs_eid[0]]->dtype, bits, "Feature data", {
        if (format == SparseFormat::kCSR) {
          SDDMMCsrHetero<XPU, IdType, bits>(
              op, bcast, vec_csr,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
        } else {
177
178
179
          // TODO(Israt): Add support for COO format
          LOG(FATAL) << "SDDMM only supports CSC format for graphs with number "
                     << "of relation types > 1";
180
181
182
183
184
185
        }
      });
    });
  });
}

186
NDArray GetEdgeMapping(HeteroGraphRef graph) {
187
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
188
189
190
191
192
193
194
  if (format == SparseFormat::kCSC) {
    return graph.sptr()->GetCSCMatrix(0).data;
  } else {
    return NullArray();
  }
}

195
196
197
198
199
200
201
202
/*! \brief Segment reduce dispatch function. */
void SegmentReduceDispatch(const std::string& op,
                           NDArray feat,
                           NDArray offsets,
                           NDArray out,
                           NDArray arg) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "SegmentReduce", {
    ATEN_ID_TYPE_SWITCH(offsets->dtype, IdType, {
203
204
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
          SegmentReduce<XPU, IdType, bits>(op, feat, offsets, out, arg);
205
206
207
208
209
      });
    });
  });
}

210
211
212
213
214
215
216
217
218
219
220
/*! \brief Scatter Add (on first dimension) dispatch function. */
void ScatterAddDispatch(NDArray feat, NDArray idx, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        ScatterAdd<XPU, IdType, bits>(feat, idx, out);
      });
    });
  });
}

221
222
223
224
/*! \brief Backward segment cmp dispatch function.*/
void BackwardSegmentCmpDispatch(NDArray feat, NDArray arg, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "BackwardSegmentCmp", {
    ATEN_ID_TYPE_SWITCH(arg->dtype, IdType, {
225
226
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        BackwardSegmentCmp<XPU, IdType, bits>(feat, arg, out);
227
228
229
230
231
      });
    });
  });
}

232
233
234
235
236
std::pair<CSRMatrix, NDArray> CSRMM(
    CSRMatrix A,
    NDArray A_weights,
    CSRMatrix B,
    NDArray B_weights) {
237
238
239
  CHECK_EQ(A.num_cols, B.num_rows) <<
    "The number of nodes of destination node type of the first graph must be the "
    "same as the number of nodes of source node type of the second graph.";
240
241
242
243
244
245
246
247
248
  CheckCtx(
      A.indptr->ctx,
      {A_weights, B_weights},
      {"A's edge weights", "B's edge weights"});
  CHECK_EQ(A.indptr->ctx, B.indptr->ctx) << "Device of two graphs must match.";
  CHECK_EQ(A.indptr->dtype, B.indptr->dtype) << "ID types of two graphs must match.";
  CHECK_EQ(A_weights->dtype, B_weights->dtype) << "Data types of two edge weights must match.";

  std::pair<CSRMatrix, NDArray> ret;
249
  ATEN_XPU_SWITCH_CUDA(A.indptr->ctx.device_type, XPU, "CSRMM", {
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    ATEN_ID_TYPE_SWITCH(A.indptr->dtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
        ret = CSRMM<XPU, IdType, DType>(A, A_weights, B, B_weights);
      });
    });
  });
  return ret;
}

std::pair<CSRMatrix, NDArray> CSRSum(
    const std::vector<CSRMatrix>& A,
    const std::vector<NDArray>& A_weights) {
  CHECK(A.size() > 0) << "The list of graphs must not be empty.";
  CHECK_EQ(A.size(), A_weights.size()) <<
    "The list of edge weights must have the same length as the list of graphs.";
265
266
267
268
269
  const auto ctx = A[0].indptr->ctx;
  const auto idtype = A[0].indptr->dtype;
  const auto dtype = A_weights[0]->dtype;
  const auto num_rows = A[0].num_rows;
  const auto num_cols = A[0].num_cols;
270
271
272
273
274
275
276
277
278
  for (size_t i = 0; i < A.size(); ++i) {
    CHECK_EQ(A[i].indptr->ctx, ctx) << "The devices of all graphs must be equal.";
    CHECK_EQ(A[i].indptr->dtype, idtype) << "The ID types of all graphs must be equal.";
    CHECK_EQ(A[i].indices->shape[0], A_weights[i]->shape[0]) <<
      "Shape of edge weights does not match the number of edges.";
    CHECK_EQ(A_weights[i]->ctx, ctx) <<
      "The devices of edge weights must be the same as that of the graphs.";
    CHECK_EQ(A_weights[i]->dtype, dtype) <<
      "The data types of all edge weights must be equal.";
279
280
    CHECK_EQ(A[i].num_rows, num_rows) << "Graphs must have the same number of nodes.";
    CHECK_EQ(A[i].num_cols, num_cols) << "Graphs must have the same number of nodes.";
281
282
283
  }

  std::pair<CSRMatrix, NDArray> ret;
284
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "CSRSum", {
285
286
287
288
289
290
291
292
293
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(dtype, DType, "Edge weights", {
        ret = CSRSum<XPU, IdType, DType>(A, A_weights);
      });
    });
  });
  return ret;
}

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
317
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE});
318
319
  });

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    List<Value> list_U = args[3];
    List<Value> list_E = args[4];
    List<Value> list_V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    std::vector<NDArray> U_vec;
    std::vector<NDArray> V_vec;
    std::vector<NDArray> E_vec;
    U_vec.reserve(list_U.size());
    V_vec.reserve(list_V.size());
    E_vec.reserve(list_E.size());
    for (Value val : list_U) {
      U_vec.push_back(val->data);
    }
    for (Value val : list_V) {
      V_vec.push_back(val->data);
    }
    for (Value val : list_E) {
      E_vec.push_back(val->data);
    }
    for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
      auto pair = graph->meta_graph()->FindEdge(etype);
      const dgl_id_t src_id = pair.first;
      const dgl_id_t dst_id = pair.second;
      NDArray U = (U_vec.size() == 0) ? NullArray() : U_vec[src_id];
      NDArray E = (E_vec.size() == 0) ? NullArray() : E_vec[etype];
      CheckCtx(graph->Context(), {U, E, V_vec[dst_id], ArgU, ArgE},
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
      CheckContiguous({U, E, V_vec[dst_id], ArgU, ArgE},
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    }
    SpMMHetero(op, reduce_op, graph.sptr(), U_vec, E_vec, V_vec, {ArgU, ArgE});
  });

359
360
361
362
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
363
364
365
366
367
368
369
    NDArray lhs = args[2];
    NDArray rhs = args[3];
    NDArray out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
370
371
372
373
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
374

375
376
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
377
378
        {lhs_target, rhs_target, 1},
        {lhs, rhs, out},
379
        {"U_data", "E_data", "V_data"});
380
    SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target);
381
382
  });

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_lhs = args[2];
    List<Value> list_rhs = args[3];
    List<Value> list_out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    std::vector<NDArray> vec_lhs;
    std::vector<NDArray> vec_rhs;
    std::vector<NDArray> vec_out;

    vec_lhs.reserve(list_lhs.size());
    vec_rhs.reserve(list_rhs.size());
    vec_out.reserve(list_out.size());

    for (Value val : list_lhs) {
      vec_lhs.push_back(val->data);
    }
    for (Value val : list_rhs) {
      vec_rhs.push_back(val->data);
    }
    for (Value val : list_out) {
      vec_out.push_back(val->data);
    }
    SDDMMHetero(op, graph.sptr(), vec_lhs, vec_rhs, vec_out, lhs_target, rhs_target);
  });

413
414
415
416
417
418
419
420
421
422
423
424
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSegmentReduce")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string op = args[0];
    NDArray feat = args[1];
    NDArray offsets = args[2];
    NDArray out = args[3];
    NDArray arg = args[4];
    CheckCtx(feat->ctx, {feat, offsets, out}, {"feat", "offsets", "out"});
    CheckContiguous({feat, offsets, out}, {"feat", "offsets", "out"});
    SegmentReduceDispatch(op, feat, offsets, out, arg);
  });

425
426
427
428
429
430
431
432
433
434
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelScatterAdd")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray idx = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    ScatterAddDispatch(feat, idx, out);
  });

435
436
437
438
439
440
441
442
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelBwdSegmentCmp")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray arg = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, arg, out}, {"feat", "arg", "out"});
    CheckContiguous({feat, arg, out}, {"feat", "arg", "out"});
    BackwardSegmentCmpDispatch(feat, arg, out);
Zhi Lin's avatar
Zhi Lin committed
443
444
  });

445
446
447
448
449
450
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGetEdgeMapping")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    *rv = GetEdgeMapping(graph);
  });

451
452
453
454
455
456
457
458
459
460
/*!
 * \brief Sparse matrix multiplication with graph interface.
 *
 * \param A_ref The left operand.
 * \param A_weights The edge weights of graph A.
 * \param B_ref The right operand.
 * \param B_weights The edge weights of graph B.
 * \param num_vtypes The number of vertex types of the graph to be returned.
 * \return A pair consisting of the new graph as well as its edge weights.
 */
461
462
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];
    NDArray B_weights = args[3];
    int num_vtypes = args[4];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "The first graph must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "The second graph must have only one edge type.";
    const auto A_csr = A->GetCSRMatrix(0);
    const auto B_csr = B->GetCSRMatrix(0);
    auto result = CSRMM(A_csr, A_weights, B_csr, B_weights);

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
479
480
481
482
483
484
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRSum")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    List<HeteroGraphRef> A_refs = args[0];
    List<Value> A_weights = args[1];

    std::vector<NDArray> weights = ListValueToVector<NDArray>(A_weights);
    std::vector<CSRMatrix> mats;
    mats.reserve(A_refs.size());
    int num_vtypes = 0;
    for (auto A_ref : A_refs) {
      const HeteroGraphPtr A = A_ref.sptr();
      CHECK_EQ(A->NumEdgeTypes(), 1) << "Graphs must have only one edge type.";
      mats.push_back(A->GetCSRMatrix(0));
      if (num_vtypes == 0)
        num_vtypes = A->NumVertexTypes();
    }
499
    auto result = CSRSum(mats, weights);
500
501
502

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
503
504
505
506
507
508
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMask")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    const CSRMatrix& A_csr = A->GetCSRMatrix(0);
    const COOMatrix& B_coo = B->GetCOOMatrix(0);
    CHECK_EQ(A_csr.num_rows, B_coo.num_rows) <<
      "Both graphs must have the same number of nodes.";
    CHECK_EQ(A_csr.num_cols, B_coo.num_cols) <<
      "Both graphs must have the same number of nodes.";

    NDArray result;
    ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
      result = aten::CSRGetData<DType>(A_csr, B_coo.row, B_coo.col, A_weights, 0.);
    });
528
529
530
    *rv = result;
  });

Zhi Lin's avatar
Zhi Lin committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#ifdef USE_TVM
DGL_REGISTER_GLOBAL("sparse._CAPI_FG_LoadModule")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string path = args[0];
    dgl::featgraph::LoadFeatGraphModule(path);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_FG_SDDMMTreeReduction")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    NDArray lhs = args[1];
    NDArray rhs = args[2];
    NDArray out = args[3];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    // auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    // const dgl_type_t src_vtype = pair.first;
    // const dgl_type_t dst_vtype = pair.second;
    // CheckShape(
    //     {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
    //     {lhs_target, rhs_target, 1},
    //     {lhs, rhs, out},
    //     {"U_data", "E_data", "V_data"});
    COOMatrix coo = graph.sptr()->GetCOOMatrix(0);
    dgl::featgraph::SDDMMTreeReduction(coo.row.ToDLPack(), coo.col.ToDLPack(),
                                       lhs.ToDLPack(), rhs.ToDLPack(), out.ToDLPack());
  });
#endif  // USE_TVM

561

562
563
}  // namespace aten
}  // namespace dgl