kernel.cc 5.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

#include "kernel_decl.h"
#include "../c_api_common.h"

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

// Check whether the given arguments have the same context.
inline void CheckCtx(
    const DLContext& ctx,
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK_EQ(ctx, arrays[i]->ctx)
      << "Expected device context " << ctx << ". But got "
      << arrays[i]->ctx << " for " << names[i] << ".";
  }
}

// Check whether input tensors are contiguous.
inline void CheckContiguous(
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK(arrays[i].IsContiguous())
      << "Expect " << names[i] << " to be a contiguous tensor";
  }
}

// Check whether input tensors have valid shape.
inline void CheckShape(
    const std::vector<uint64_t>& gdim,
    const std::vector<int>& uev_idx,
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK_GE(arrays[i]->ndim, 2)
      << "Expect " << names[i] << " to have ndim >= 2, "
      << "Note that for scalar feature we expand its "
      << "dimension with an additional dimension of "
      << "length one.";
    CHECK_EQ(gdim[uev_idx[i]], arrays[i]->shape[0])
      << "Expect " << names[i] << " to have size "
      << gdim[uev_idx[i]] << " on the first dimension, "
      << "but got " << arrays[i]->shape[0];
  }
}

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
73
          std::vector<NDArray> out_aux) {
74
  // TODO(zihao): format tuning
75
  SparseFormat format = graph->SelectFormat(0, csc_code);
76
77
78
79
80
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_TYPE_SWITCH(out->dtype, DType, "Feature data", {
81
        if (format == SparseFormat::kCSC) {
82
83
84
85
86
87
88
89
          SpMMCsr<XPU, IdType, DType>(
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
          SpMMCoo<XPU, IdType, DType>(
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
90
          LOG(FATAL) << "SpMM only supports CSC and COO foramts";
91
92
93
94
95
96
97
98
99
        }
      });
    });
  });
}

/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
100
101
           NDArray lhs,
           NDArray rhs,
102
           NDArray out,
103
           int lhs_target,
104
           int rhs_target) {
105
  // TODO(zihao): format tuning
106
107
  SparseFormat format = graph->SelectFormat(0, coo_code);
  const auto &bcast = CalcBcastOff(op, lhs, rhs);
108
109
110
111
112
113
114

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_TYPE_SWITCH(out->dtype, DType, "Feature data", {
        if (format == SparseFormat::kCSR) {
          SDDMMCsr<XPU, IdType, DType>(
              op, bcast, graph->GetCSRMatrix(0),
115
              lhs, rhs, out, lhs_target, rhs_target);
116
117
118
        } else if (format == SparseFormat::kCOO) {
          SDDMMCoo<XPU, IdType, DType>(
              op, bcast, graph->GetCOOMatrix(0),
119
              lhs, rhs, out, lhs_target, rhs_target);
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        } else {
          LOG(FATAL) << "SDDMM only supports CSR and COO foramts";
        }
      });
    });
  });
}

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
151
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE});
152
153
154
155
156
157
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
158
159
160
161
162
163
164
    NDArray lhs = args[2];
    NDArray rhs = args[3];
    NDArray out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
165
166
167
168
169
170
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
171
172
        {lhs_target, rhs_target, 1},
        {lhs, rhs, out},
173
        {"U_data", "E_data", "V_data"});
174
    SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target);
175
176
177
178
  });

}  // namespace aten
}  // namespace dgl