kernel.cc 27.7 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

Zhi Lin's avatar
Zhi Lin committed
9
10
11
12
#ifdef USE_TVM
#include <featgraph.h>
#endif  // USE_TVM

13
14
#include "kernel_decl.h"
#include "../c_api_common.h"
15
#include "./check.h"
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
31
          std::vector<NDArray> out_aux) {
32
  // TODO(zihao): format tuning
33
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
34
35
36
37
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
38
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
39
        if (format == SparseFormat::kCSC) {
40
          SpMMCsr<XPU, IdType, bits>(
41
42
43
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
44
          SpMMCoo<XPU, IdType, bits>(
45
46
47
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
48
          LOG(FATAL) << "SpMM only supports CSC and COO formats";
49
50
51
52
53
54
        }
      });
    });
  });
}

Israt Nisa's avatar
Israt Nisa committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

/*! \brief Generalized segmented dense Matrix-Matrix Multiplication. */
void SegmentMM(const NDArray A,
          const NDArray B,
          NDArray C,
          const NDArray seglen_A,
          bool A_trans, bool B_trans) {
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "GatherMM", {
    ATEN_ID_TYPE_SWITCH(seglen_A->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
        segmentMM<XPU, IdType, bits>(A, B, C, seglen_A, A_trans, B_trans);
      });
    });
  });
}


/*! \brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
void GatherMM(const NDArray A,
          const NDArray B,
          NDArray C,
          const NDArray idx_a,
          const NDArray idx_b,
          const int num_rel) {
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "GatherMM", {
    ATEN_ID_TYPE_SWITCH(idx_b->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
        gatherMM<XPU, IdType, bits>(A, B, C, idx_a, idx_b, num_rel);
      });
    });
  });
}


/*! \brief Generalized Dense Matrix-Matrix Multiplication according to relation types. */
void GatherMM_scatter(const NDArray A,
          const NDArray B,
          NDArray C,
          const NDArray idx_a,
          const NDArray idx_b,
          const NDArray idx_c,
          const int num_rel,
          bool A_trans, bool B_trans) {
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "GatherMM", {
    ATEN_ID_TYPE_SWITCH(idx_b->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(A->dtype, bits, "Feature data", {
        gatherMM_scatter<XPU, IdType, bits>(A, B, C, idx_a, idx_b, idx_c,
           num_rel, A_trans, B_trans);
      });
    });
  });
}


109
110
111
/*! \brief Generalized Sparse Matrix-Matrix Multiplication with hetero-graph support. */
void SpMMHetero(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
112
113
114
115
          const std::vector<NDArray>& ufeat_vec,
          const std::vector<NDArray>& efeat_vec,
          std::vector<NDArray>* out,
          std::vector<std::vector<NDArray>>* out_aux) {
116
117
118
119
120
121
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);

  std::vector<CSRMatrix> vec_graph;
  std::vector<dgl_type_t> ufeat_eid;
  std::vector<dgl_type_t> efeat_eid;
  std::vector<dgl_type_t> out_eid;
122
123
124
  auto pair = graph->meta_graph()->FindEdge(0);  // first etype
  NDArray ufeat_etype0 = (ufeat_vec.size() == 0) ? NullArray() : ufeat_vec[pair.first];
  NDArray efeat_etype0 = (efeat_vec.size() == 0) ? NullArray() : efeat_vec[0];
125
126
127
128
129
130
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
    vec_graph.push_back(graph->GetCSCMatrix(etype));
    auto pair = graph->meta_graph()->FindEdge(etype);
    ufeat_eid.push_back(pair.first);
    efeat_eid.push_back(etype);
    out_eid.push_back(pair.second);
131
132
133
134
    if (ufeat_etype0->shape[1] != ufeat_vec[pair.first]->shape[1])
      LOG(FATAL) << "Column width of the input node features of all etypes must be same.";
    if (efeat_etype0->shape[1] != efeat_vec[etype]->shape[1])
      LOG(FATAL) << "Column width of the input edge features of all etypes must be same.";
135
  }
136
  const auto& bcast = CalcBcastOff(op, ufeat_etype0, efeat_etype0);
137

138
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
139
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
140
      ATEN_FLOAT_BITS_SWITCH((*out)[out_eid[0]]->dtype, bits, "Feature data", {
141
142
143
144
145
146
        if (format == SparseFormat::kCSC) {
          SpMMCsrHetero<XPU, IdType, bits>(
              op, reduce, bcast, vec_graph,
              ufeat_vec, efeat_vec, out, out_aux,
              ufeat_eid, out_eid);
        } else {
147
148
149
          // TODO(Israt): Add support for COO format
          LOG(FATAL) << "SpMM only supports CSC format for graphs with number "
                     << "of relation types > 1";
150
151
152
153
154
155
156
        }
      });
    });
  });
}


157
158
159
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
160
161
           NDArray lhs,
           NDArray rhs,
162
           NDArray out,
163
           int lhs_target,
164
           int rhs_target) {
165
  // TODO(zihao): format tuning
166
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
167
  const auto &bcast = CalcBcastOff(op, lhs, rhs);
168
169
170

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
171
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
172
        if (format == SparseFormat::kCSR) {
173
          SDDMMCsr<XPU, IdType, bits>(
174
              op, bcast, graph->GetCSRMatrix(0),
175
              lhs, rhs, out, lhs_target, rhs_target);
176
        } else if (format == SparseFormat::kCOO) {
177
          SDDMMCoo<XPU, IdType, bits>(
178
              op, bcast, graph->GetCOOMatrix(0),
179
              lhs, rhs, out, lhs_target, rhs_target);
180
        } else {
181
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
182
183
184
185
186
187
        }
      });
    });
  });
}

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*!
 * \brief Find the src/dst/etype id based on the target 'u', 'v' or 'e'.
 *
 * \param graph The input graph.
 * \param target 'u', 'v' or 'e'. The target of the lhs or rhs data of an etype.
 * \param etype Relation type of the input graph.
 */
int get_typeid_by_target(HeteroGraphPtr graph, int target, dgl_type_t etype) {
  auto pair = graph->meta_graph()->FindEdge(etype);
  if (target == 0)
    return pair.first;
  if (target == 2)
    return pair.second;
  return etype;
}

204
205
206
207
208
209
210
211
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMMHetero(const std::string& op,
           HeteroGraphPtr graph,
           std::vector<NDArray> lhs,
           std::vector<NDArray> rhs,
           std::vector<NDArray> out,
           int lhs_target,
           int rhs_target) {
212
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
213
214
215
216

  std::vector<dgl_type_t> lhs_eid;
  std::vector<dgl_type_t> rhs_eid;
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
217
218
    lhs_eid.push_back(get_typeid_by_target(graph, lhs_target, etype));
    rhs_eid.push_back(get_typeid_by_target(graph, rhs_target, etype));
219
220
221
  }
  const auto &bcast = CalcBcastOff(op, lhs[lhs_eid[0]], rhs[rhs_eid[0]]);

222
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
223
224
225
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out[rhs_eid[0]]->dtype, bits, "Feature data", {
        if (format == SparseFormat::kCSR) {
226
227
228
229
          std::vector<CSRMatrix> vec_csr;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_csr.push_back(graph->GetCSRMatrix(etype));
          }
230
231
232
233
          SDDMMCsrHetero<XPU, IdType, bits>(
              op, bcast, vec_csr,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
234
235
236
237
238
239
240
241
242
        } else if (format == SparseFormat::kCOO) {
          std::vector<COOMatrix> vec_coo;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_coo.push_back(graph->GetCOOMatrix(etype));
          }
          SDDMMCooHetero<XPU, IdType, bits>(
              op, bcast, vec_coo,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
243
        } else {
244
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
245
246
247
248
249
250
        }
      });
    });
  });
}

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

/*! \brief Generalized Edge_softmax op for forward */
void Edge_softmax_forward(const std::string& op,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out) {
  // TODO(zhejiang): add gpu op for edge_softmax
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "edge_softmax out data", {
        Edge_softmax_csr_forward<XPU, IdType, bits>(
          op, bcast, graph->GetCSCMatrix(0), ufeat, efeat, out);
      });
    });
  });
}


/*! \brief Generalized Edge_softmax op for backward */
void Edge_softmax_backward(const std::string& op,
          HeteroGraphPtr graph,
          NDArray out,
          NDArray sds,
          NDArray back_out,
          NDArray ufeat) {
  // TODO(zhejiang): add gpu op for edge_softmax
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
  const auto& bcast = CalcBcastOff(op, ufeat, sds);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax_back", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "edge_softmax out data_back", {
        Edge_softmax_csr_backward<XPU, IdType, bits>(
          op, bcast, graph->GetCSCMatrix(0), out, sds, back_out);
      });
    });
  });
}


295
NDArray GetEdgeMapping(HeteroGraphRef graph) {
296
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
297
298
299
300
301
302
303
  if (format == SparseFormat::kCSC) {
    return graph.sptr()->GetCSCMatrix(0).data;
  } else {
    return NullArray();
  }
}

304
305
306
307
308
309
310
311
/*! \brief Segment reduce dispatch function. */
void SegmentReduceDispatch(const std::string& op,
                           NDArray feat,
                           NDArray offsets,
                           NDArray out,
                           NDArray arg) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "SegmentReduce", {
    ATEN_ID_TYPE_SWITCH(offsets->dtype, IdType, {
312
313
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
          SegmentReduce<XPU, IdType, bits>(op, feat, offsets, out, arg);
314
315
316
317
318
      });
    });
  });
}

319
320
321
322
323
324
325
326
327
328
329
/*! \brief Scatter Add (on first dimension) dispatch function. */
void ScatterAddDispatch(NDArray feat, NDArray idx, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        ScatterAdd<XPU, IdType, bits>(feat, idx, out);
      });
    });
  });
}

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/*! \brief Update gradients (reduce op max/min) dispatch function on heterogeneous graph. */
void UpdateGradMinMaxDispatchHetero(const HeteroGraphPtr& graph,
                        const std::string& op,
                        const std::vector<NDArray>& feat,
                        const std::vector<NDArray>& idx,
                        const std::vector<NDArray>& idx_etype,
                        std::vector<NDArray>* out) {
  auto pair = graph->meta_graph()->FindEdge(0);  // checking the first etype
  auto src_id = pair.first;
  ATEN_XPU_SWITCH_CUDA(feat[src_id]->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx[src_id]->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat[src_id]->dtype, bits, "Feature data", {
        UpdateGradMinMax_hetero<XPU, IdType, bits>(graph, op, feat, idx, idx_etype, out);
      });
    });
  });
}

348
349
350
351
/*! \brief Backward segment cmp dispatch function.*/
void BackwardSegmentCmpDispatch(NDArray feat, NDArray arg, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "BackwardSegmentCmp", {
    ATEN_ID_TYPE_SWITCH(arg->dtype, IdType, {
352
353
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        BackwardSegmentCmp<XPU, IdType, bits>(feat, arg, out);
354
355
356
357
358
      });
    });
  });
}

359
360
361
362
363
std::pair<CSRMatrix, NDArray> CSRMM(
    CSRMatrix A,
    NDArray A_weights,
    CSRMatrix B,
    NDArray B_weights) {
364
365
366
  CHECK_EQ(A.num_cols, B.num_rows) <<
    "The number of nodes of destination node type of the first graph must be the "
    "same as the number of nodes of source node type of the second graph.";
367
368
369
370
371
372
373
374
375
  CheckCtx(
      A.indptr->ctx,
      {A_weights, B_weights},
      {"A's edge weights", "B's edge weights"});
  CHECK_EQ(A.indptr->ctx, B.indptr->ctx) << "Device of two graphs must match.";
  CHECK_EQ(A.indptr->dtype, B.indptr->dtype) << "ID types of two graphs must match.";
  CHECK_EQ(A_weights->dtype, B_weights->dtype) << "Data types of two edge weights must match.";

  std::pair<CSRMatrix, NDArray> ret;
376
  ATEN_XPU_SWITCH_CUDA(A.indptr->ctx.device_type, XPU, "CSRMM", {
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    ATEN_ID_TYPE_SWITCH(A.indptr->dtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
        ret = CSRMM<XPU, IdType, DType>(A, A_weights, B, B_weights);
      });
    });
  });
  return ret;
}

std::pair<CSRMatrix, NDArray> CSRSum(
    const std::vector<CSRMatrix>& A,
    const std::vector<NDArray>& A_weights) {
  CHECK(A.size() > 0) << "The list of graphs must not be empty.";
  CHECK_EQ(A.size(), A_weights.size()) <<
    "The list of edge weights must have the same length as the list of graphs.";
392
393
394
395
396
  const auto ctx = A[0].indptr->ctx;
  const auto idtype = A[0].indptr->dtype;
  const auto dtype = A_weights[0]->dtype;
  const auto num_rows = A[0].num_rows;
  const auto num_cols = A[0].num_cols;
397
398
399
400
401
402
403
404
405
  for (size_t i = 0; i < A.size(); ++i) {
    CHECK_EQ(A[i].indptr->ctx, ctx) << "The devices of all graphs must be equal.";
    CHECK_EQ(A[i].indptr->dtype, idtype) << "The ID types of all graphs must be equal.";
    CHECK_EQ(A[i].indices->shape[0], A_weights[i]->shape[0]) <<
      "Shape of edge weights does not match the number of edges.";
    CHECK_EQ(A_weights[i]->ctx, ctx) <<
      "The devices of edge weights must be the same as that of the graphs.";
    CHECK_EQ(A_weights[i]->dtype, dtype) <<
      "The data types of all edge weights must be equal.";
406
407
    CHECK_EQ(A[i].num_rows, num_rows) << "Graphs must have the same number of nodes.";
    CHECK_EQ(A[i].num_cols, num_cols) << "Graphs must have the same number of nodes.";
408
409
410
  }

  std::pair<CSRMatrix, NDArray> ret;
411
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "CSRSum", {
412
413
414
415
416
417
418
419
420
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(dtype, DType, "Edge weights", {
        ret = CSRSum<XPU, IdType, DType>(A, A_weights);
      });
    });
  });
  return ret;
}

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
444
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE});
445
446
  });

Israt Nisa's avatar
Israt Nisa committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGATHERMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray B = args[1];
    NDArray C = args[2];
    NDArray idx_a = args[3];
    NDArray idx_b = args[4];
    int num_rel = args[5];
    GatherMM(A, B, C, idx_a, idx_b, num_rel);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGATHERMMSCATTER")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray B = args[1];
    NDArray C = args[2];
    NDArray idx_a = args[3];
    NDArray idx_b = args[4];
    NDArray idx_c = args[5];
    int num_rel = args[6];
    bool A_trans = args[7];
    bool B_trans = args[8];
    GatherMM_scatter(A, B, C, idx_a, idx_b, idx_c, num_rel, A_trans, B_trans);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSEGMENTMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    NDArray A = args[0];
    NDArray B = args[1];
    NDArray C = args[2];
    NDArray seglen_A = args[3];
    bool A_trans = args[4];
    bool B_trans = args[5];
    SegmentMM(A, B, C, seglen_A, A_trans, B_trans);
  });

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_forward")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    NDArray U = args[2];
    NDArray E = args[3];
    NDArray V = args[4];
    Edge_softmax_forward(op, graph.sptr(), U, E, V);
});

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_backward")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    NDArray out = args[2];
    NDArray sds = args[3];
    NDArray back_out = args[4];
    NDArray ufeat = args[5];
    Edge_softmax_backward(op, graph.sptr(), out, sds, back_out, ufeat);
});

504
505
506
507
508
509
510
511
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    List<Value> list_U = args[3];
    List<Value> list_E = args[4];
    List<Value> list_V = args[5];
512
513
514
515
516
517
518
    List<Value> list_ArgU = args[6];
    List<Value> list_ArgE = args[7];
    List<Value> list_ArgU_ntype = args[8];
    List<Value> list_ArgE_etype = args[9];
    std::vector<std::vector<NDArray>> Arg_vec;  // ArgU + ArgE
    for (int i = 0; i < 4; ++i) {  // ArgU + ArgE + ArgU_ntype + ArgE_etype
      Arg_vec.push_back(std::vector<NDArray>());
519
    }
520
521
522
523
524
525
526
    std::vector<NDArray> U_vec = ListValueToVector<NDArray>(list_U);
    std::vector<NDArray> V_vec = ListValueToVector<NDArray>(list_V);
    std::vector<NDArray> E_vec = ListValueToVector<NDArray>(list_E);
    Arg_vec[0] = ListValueToVector<NDArray>(list_ArgU);
    Arg_vec[1] = ListValueToVector<NDArray>(list_ArgE);
    Arg_vec[2] = ListValueToVector<NDArray>(list_ArgU_ntype);
    Arg_vec[3] = ListValueToVector<NDArray>(list_ArgE_etype);
527
528
529
530
531
532
    for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
      auto pair = graph->meta_graph()->FindEdge(etype);
      const dgl_id_t src_id = pair.first;
      const dgl_id_t dst_id = pair.second;
      NDArray U = (U_vec.size() == 0) ? NullArray() : U_vec[src_id];
      NDArray E = (E_vec.size() == 0) ? NullArray() : E_vec[etype];
533
      CheckCtx(graph->Context(), {U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
534
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
535
      CheckContiguous({U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
536
537
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    }
538
    SpMMHetero(op, reduce_op, graph.sptr(), U_vec, E_vec, &V_vec, &Arg_vec);
539
540
  });

541
542
543
544
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
545
546
547
548
549
550
551
    NDArray lhs = args[2];
    NDArray rhs = args[3];
    NDArray out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
552
553
554
555
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
556

557
558
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
559
560
        {lhs_target, rhs_target, 1},
        {lhs, rhs, out},
561
        {"U_data", "E_data", "V_data"});
562
    SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target);
563
564
  });

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_lhs = args[2];
    List<Value> list_rhs = args[3];
    List<Value> list_out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    std::vector<NDArray> vec_lhs;
    std::vector<NDArray> vec_rhs;
    std::vector<NDArray> vec_out;

    vec_lhs.reserve(list_lhs.size());
    vec_rhs.reserve(list_rhs.size());
    vec_out.reserve(list_out.size());

    for (Value val : list_lhs) {
      vec_lhs.push_back(val->data);
    }
    for (Value val : list_rhs) {
      vec_rhs.push_back(val->data);
    }
    for (Value val : list_out) {
      vec_out.push_back(val->data);
    }
    SDDMMHetero(op, graph.sptr(), vec_lhs, vec_rhs, vec_out, lhs_target, rhs_target);
  });

595
596
597
598
599
600
601
602
603
604
605
606
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSegmentReduce")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string op = args[0];
    NDArray feat = args[1];
    NDArray offsets = args[2];
    NDArray out = args[3];
    NDArray arg = args[4];
    CheckCtx(feat->ctx, {feat, offsets, out}, {"feat", "offsets", "out"});
    CheckContiguous({feat, offsets, out}, {"feat", "offsets", "out"});
    SegmentReduceDispatch(op, feat, offsets, out, arg);
  });

607
608
609
610
611
612
613
614
615
616
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelScatterAdd")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray idx = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    ScatterAddDispatch(feat, idx, out);
  });

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelUpdateGradMinMaxHetero")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_feat = args[2];
    List<Value> list_idx = args[3];
    List<Value> list_idx_etype = args[4];
    List<Value> list_out = args[5];
    std::vector<NDArray> vec_feat = ListValueToVector<NDArray>(list_feat);
    std::vector<NDArray> vec_idx = ListValueToVector<NDArray>(list_idx);
    std::vector<NDArray> vec_idx_etype = ListValueToVector<NDArray>(list_idx_etype);
    std::vector<NDArray> vec_out = ListValueToVector<NDArray>(list_out);
    // CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    // CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    UpdateGradMinMaxDispatchHetero(graph.sptr(), op, vec_feat, vec_idx, vec_idx_etype, &vec_out);
  });

634
635
636
637
638
639
640
641
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelBwdSegmentCmp")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray arg = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, arg, out}, {"feat", "arg", "out"});
    CheckContiguous({feat, arg, out}, {"feat", "arg", "out"});
    BackwardSegmentCmpDispatch(feat, arg, out);
Zhi Lin's avatar
Zhi Lin committed
642
643
  });

644
645
646
647
648
649
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGetEdgeMapping")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    *rv = GetEdgeMapping(graph);
  });

650
651
652
653
654
655
656
657
658
659
/*!
 * \brief Sparse matrix multiplication with graph interface.
 *
 * \param A_ref The left operand.
 * \param A_weights The edge weights of graph A.
 * \param B_ref The right operand.
 * \param B_weights The edge weights of graph B.
 * \param num_vtypes The number of vertex types of the graph to be returned.
 * \return A pair consisting of the new graph as well as its edge weights.
 */
660
661
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];
    NDArray B_weights = args[3];
    int num_vtypes = args[4];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "The first graph must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "The second graph must have only one edge type.";
    const auto A_csr = A->GetCSRMatrix(0);
    const auto B_csr = B->GetCSRMatrix(0);
    auto result = CSRMM(A_csr, A_weights, B_csr, B_weights);

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
678
679
680
681
682
683
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRSum")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    List<HeteroGraphRef> A_refs = args[0];
    List<Value> A_weights = args[1];

    std::vector<NDArray> weights = ListValueToVector<NDArray>(A_weights);
    std::vector<CSRMatrix> mats;
    mats.reserve(A_refs.size());
    int num_vtypes = 0;
    for (auto A_ref : A_refs) {
      const HeteroGraphPtr A = A_ref.sptr();
      CHECK_EQ(A->NumEdgeTypes(), 1) << "Graphs must have only one edge type.";
      mats.push_back(A->GetCSRMatrix(0));
      if (num_vtypes == 0)
        num_vtypes = A->NumVertexTypes();
    }
698
    auto result = CSRSum(mats, weights);
699
700
701

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
702
703
704
705
706
707
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMask")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    const CSRMatrix& A_csr = A->GetCSRMatrix(0);
    const COOMatrix& B_coo = B->GetCOOMatrix(0);
    CHECK_EQ(A_csr.num_rows, B_coo.num_rows) <<
      "Both graphs must have the same number of nodes.";
    CHECK_EQ(A_csr.num_cols, B_coo.num_cols) <<
      "Both graphs must have the same number of nodes.";

    NDArray result;
    ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
      result = aten::CSRGetData<DType>(A_csr, B_coo.row, B_coo.col, A_weights, 0.);
    });
727
728
729
    *rv = result;
  });

Zhi Lin's avatar
Zhi Lin committed
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
#ifdef USE_TVM
DGL_REGISTER_GLOBAL("sparse._CAPI_FG_LoadModule")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string path = args[0];
    dgl::featgraph::LoadFeatGraphModule(path);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_FG_SDDMMTreeReduction")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    NDArray lhs = args[1];
    NDArray rhs = args[2];
    NDArray out = args[3];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    // auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    // const dgl_type_t src_vtype = pair.first;
    // const dgl_type_t dst_vtype = pair.second;
    // CheckShape(
    //     {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
    //     {lhs_target, rhs_target, 1},
    //     {lhs, rhs, out},
    //     {"U_data", "E_data", "V_data"});
    COOMatrix coo = graph.sptr()->GetCOOMatrix(0);
    dgl::featgraph::SDDMMTreeReduction(coo.row.ToDLPack(), coo.col.ToDLPack(),
                                       lhs.ToDLPack(), rhs.ToDLPack(), out.ToDLPack());
  });
#endif  // USE_TVM

760
761
}  // namespace aten
}  // namespace dgl