entity_classify_mp.py 23.9 KB
Newer Older
1
2
3
4
5
6
7
8
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
9
import argparse, gc
10
11
12
13
14
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
15
16
import dgl.multiprocessing as mp
from dgl.multiprocessing import Queue
17
18
19
20
21
22
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
import dgl
from dgl import DGLGraph
from functools import partial

23
from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
24
25
from model import RelGraphEmbedLayer
from dgl.nn import RelGraphConv
26
import tqdm
27
28

from ogb.nodeproppred import DglNodePropPredDataset
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

class EntityClassify(nn.Module):
    """ Entity classification class for RGCN
    Parameters
    ----------
    device : int
        Device to run the layer.
    num_nodes : int
        Number of nodes.
    h_dim : int
        Hidden dim size.
    out_dim : int
        Output dim size.
    num_rels : int
        Numer of relation types.
44
    num_bases : int, optional
45
        Number of bases. If is none, use number of relations.
46
47
        Default None
    num_hidden_layers : int, optional
48
        Number of hidden RelGraphConv Layer
49
50
51
52
53
54
55
56
        Default 1
    dropout : float, optional
        Dropout.
        Default 0
    use_self_loop : bool, optional
        Use self loop if True.
        Default True
    low_mem : bool, optional
57
58
        True to use low memory implementation of relation message passing function
        trade speed with memory consumption
59
60
61
62
        Default True
    layer_norm : bool, optional
        True to use layer norm.
        Default False
63
64
65
66
67
68
69
70
71
72
73
    """
    def __init__(self,
                 device,
                 num_nodes,
                 h_dim,
                 out_dim,
                 num_rels,
                 num_bases=None,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False,
74
                 low_mem=True,
75
                 layer_norm=False):
76
77
78
79
80
81
82
83
84
85
86
        super(EntityClassify, self).__init__()
        self.device = th.device(device if device >= 0 else 'cpu')
        self.num_nodes = num_nodes
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_rels = num_rels
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop
        self.low_mem = low_mem
87
        self.layer_norm = layer_norm
88
89
90
91
92
93

        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConv(
            self.h_dim, self.h_dim, self.num_rels, "basis",
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
94
            low_mem=self.low_mem, dropout=self.dropout, layer_norm = layer_norm))
95
96
97
98
99
        # h2h
        for idx in range(self.num_hidden_layers):
            self.layers.append(RelGraphConv(
                self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
100
                low_mem=self.low_mem, dropout=self.dropout, layer_norm = layer_norm))
101
102
103
104
105
        # h2o
        self.layers.append(RelGraphConv(
            self.h_dim, self.out_dim, self.num_rels, "basis",
            self.num_bases, activation=None,
            self_loop=self.use_self_loop,
106
            low_mem=self.low_mem, layer_norm = layer_norm))
107
108
109
110
111
112
113
114
115
116
117

    def forward(self, blocks, feats, norm=None):
        if blocks is None:
            # full graph training
            blocks = [self.g] * len(self.layers)
        h = feats
        for layer, block in zip(self.layers, blocks):
            block = block.to(self.device)
            h = layer(block, h, block.edata['etype'], block.edata['norm'])
        return h

118
119
120
121
122
123
124
125
def gen_norm(g):
    _, v, eid = g.all_edges(form='all')
    _, inverse_index, count = th.unique(v, return_inverse=True, return_counts=True)
    degrees = count[inverse_index]
    norm = th.ones(eid.shape[0], device=eid.device) / degrees
    norm = norm.unsqueeze(1)
    g.edata['norm'] = norm

126
def evaluate(model, embed_layer, eval_loader, node_feats, inv_target):
127
128
129
130
    model.eval()
    embed_layer.eval()
    eval_logits = []
    eval_seeds = []
131

132
    with th.no_grad():
133
        th.cuda.empty_cache()
134
        for sample_data in tqdm.tqdm(eval_loader):
135
136
137
138
139
            inputs, seeds, blocks = sample_data
            seeds = inv_target[seeds]

            for block in blocks:
                gen_norm(block)
140

141
            feats = embed_layer(blocks[0].srcdata[dgl.NID],
142
143
144
                                blocks[0].srcdata['ntype'],
                                blocks[0].srcdata['type_id'],
                                node_feats)
145
146
147
            logits = model(blocks, feats)
            eval_logits.append(logits.cpu().detach())
            eval_seeds.append(seeds.cpu().detach())
148

149
150
151
    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)

152
    return eval_logits, eval_seeds
153

154
def run(proc_id, n_gpus, n_cpus, args, devices, dataset, queue=None):
155
    dev_id = devices[proc_id] if devices[proc_id] != 'cpu' else -1
156
    g, node_feats, num_of_ntype, num_classes, num_rels, target_idx, \
157
        inv_target, train_idx, val_idx, test_idx, labels = dataset
158

159
    fanouts = [int(fanout) for fanout in args.fanout.split(',')]
160
161
    node_tids = g.ndata[dgl.NTYPE]

162
    world_size = n_gpus
163
164
165
166
    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        backend = 'nccl'
167

168
169
        # using sparse embedding or using mix_cpu_gpu model (embedding model can not be stored in GPU)
        if dev_id < 0 or args.dgl_sparse is False:
170
            backend = 'gloo'
171
        print("backend using {}".format(backend))
172
173
174
        th.distributed.init_process_group(backend=backend,
                                          init_method=dist_init_method,
                                          world_size=world_size,
175
176
177
178
179
180
181
182
                                          rank=proc_id)

    sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts)
    loader = dgl.dataloading.NodeDataLoader(
        g,
        target_idx[train_idx],
        sampler,
        use_ddp=n_gpus > 1,
183
        device=dev_id if args.num_workers == 0 else None,
184
185
186
187
188
189
190
191
192
193
194
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False,
        num_workers=args.num_workers)

    # validation sampler
    val_loader = dgl.dataloading.NodeDataLoader(
        g,
        target_idx[val_idx],
        sampler,
        use_ddp=n_gpus > 1,
195
        device=dev_id if args.num_workers == 0 else None,
196
197
198
199
200
201
202
203
204
205
206
207
        batch_size=args.batch_size,
        shuffle=False,
        drop_last=False,
        num_workers=args.num_workers)

    # test sampler
    test_sampler = dgl.dataloading.MultiLayerNeighborSampler([None] * args.n_layers)
    test_loader = dgl.dataloading.NodeDataLoader(
        g,
        target_idx[test_idx],
        test_sampler,
        use_ddp=n_gpus > 1,
208
        device=dev_id if args.num_workers == 0 else None,
209
210
211
212
        batch_size=args.eval_batch_size,
        shuffle=False,
        drop_last=False,
        num_workers=args.num_workers)
213
214
215

    # node features
    # None for one-hot feature, if not none, it should be the feature tensor.
216
    #
217
218
    embed_layer = RelGraphEmbedLayer(dev_id if args.embedding_gpu or not args.dgl_sparse else -1,
                                     dev_id,
219
220
221
222
223
                                     g.number_of_nodes(),
                                     node_tids,
                                     num_of_ntype,
                                     node_feats,
                                     args.n_hidden,
224
                                     dgl_sparse=args.dgl_sparse)
225
226

    # create model
227
    # all model params are in device.
228
229
230
231
232
233
234
235
236
    model = EntityClassify(dev_id,
                           g.number_of_nodes(),
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop,
237
238
                           low_mem=args.low_mem,
                           layer_norm=args.layer_norm)
239

240
    if dev_id >= 0 and n_gpus == 1:
241
242
243
        th.cuda.set_device(dev_id)
        labels = labels.to(dev_id)
        model.cuda(dev_id)
244
245
        # with dgl_sparse emb, only node embedding is not in GPU
        if args.dgl_sparse:
246
247
248
            embed_layer.cuda(dev_id)

    if n_gpus > 1:
249
        labels = labels.to(dev_id)
250
251
        if dev_id >= 0:
            model.cuda(dev_id)
252
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
253
254
255
256
257
258
259
        if args.dgl_sparse:
            embed_layer.cuda(dev_id)
            if len(list(embed_layer.parameters())) > 0:
                embed_layer = DistributedDataParallel(embed_layer, device_ids=[dev_id], output_device=dev_id)
        else:
            if len(list(embed_layer.parameters())) > 0:
                embed_layer = DistributedDataParallel(embed_layer, device_ids=None, output_device=None)
260
261

    # optimizer
262
263
    dense_params = list(model.parameters())
    if args.node_feats:
264
        if  n_gpus > 1:
265
            dense_params += list(embed_layer.module.embeds.parameters())
266
        else:
267
268
269
270
            dense_params += list(embed_layer.embeds.parameters())
    optimizer = th.optim.Adam(dense_params, lr=args.lr, weight_decay=args.l2norm)

    if args.dgl_sparse:
271
        all_params = list(model.parameters()) + list(embed_layer.parameters())
272
        optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)
273
274
275
276
277
278
279
280
281
282
283
        if n_gpus > 1 and isinstance(embed_layer, DistributedDataParallel):
            dgl_emb = embed_layer.module.dgl_emb
        else:
            dgl_emb = embed_layer.dgl_emb
        emb_optimizer = dgl.optim.SparseAdam(params=dgl_emb, lr=args.sparse_lr, eps=1e-8) if len(dgl_emb) > 0 else None
    else:
        if n_gpus > 1:
            embs = list(embed_layer.module.node_embeds.parameters())
        else:
            embs = list(embed_layer.node_embeds.parameters())
        emb_optimizer = th.optim.SparseAdam(embs, lr=args.sparse_lr) if len(embs) > 0 else None
284
285
286
287
288
289

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []

290
291
292
293
    train_time = 0
    validation_time = 0
    test_time = 0
    last_val_acc = 0.0
294
    do_test = False
295
296
    if n_gpus > 1 and n_cpus - args.num_workers > 0:
        th.set_num_threads(n_cpus-args.num_workers)
297
    for epoch in range(args.n_epochs):
298
299
        if n_gpus > 1:
            loader.set_epoch(epoch)
300
        tstart = time.time()
301
        model.train()
302
        embed_layer.train()
303
304

        for i, sample_data in enumerate(loader):
305
306
307
308
309
310
311
312
            input_nodes, seeds, blocks = sample_data
            # map the seed nodes back to their type-specific ids, so that they
            # can be used to look up their respective labels
            seeds = inv_target[seeds]

            for block in blocks:
                gen_norm(block)

313
            t0 = time.time()
314
            feats = embed_layer(blocks[0].srcdata[dgl.NID],
315
                                blocks[0].srcdata['ntype'],
316
                                blocks[0].srcdata['type_id'],
317
318
319
320
                                node_feats)
            logits = model(blocks, feats)
            loss = F.cross_entropy(logits, labels[seeds])
            t1 = time.time()
321
            optimizer.zero_grad()
322
            if emb_optimizer is not None:
323
324
                emb_optimizer.zero_grad()

325
            loss.backward()
326
            if emb_optimizer is not None:
327
                emb_optimizer.step()
328
            optimizer.step()
329
330
331
332
333
            t2 = time.time()

            forward_time.append(t1 - t0)
            backward_time.append(t2 - t1)
            train_acc = th.sum(logits.argmax(dim=1) == labels[seeds]).item() / len(seeds)
334
            if i % 100 == 0 and proc_id == 0:
335
336
                print("Train Accuracy: {:.4f} | Train Loss: {:.4f}".
                    format(train_acc, loss.item()))
337
        gc.collect()
338
        print("Epoch {:05d}:{:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
            format(epoch, args.n_epochs, forward_time[-1], backward_time[-1]))
        tend = time.time()
        train_time += (tend - tstart)

        def collect_eval():
            eval_logits = []
            eval_seeds = []
            for i in range(n_gpus):
                log = queue.get()
                eval_l, eval_s = log
                eval_logits.append(eval_l)
                eval_seeds.append(eval_s)
            eval_logits = th.cat(eval_logits)
            eval_seeds = th.cat(eval_seeds)
            eval_loss = F.cross_entropy(eval_logits, labels[eval_seeds].cpu()).item()
            eval_acc = th.sum(eval_logits.argmax(dim=1) == labels[eval_seeds].cpu()).item() / len(eval_seeds)

            return eval_loss, eval_acc

        vstart = time.time()
359
        if (queue is not None) or (proc_id == 0):
360
361
            val_logits, val_seeds = evaluate(model, embed_layer, val_loader,
                                             node_feats, inv_target)
362
363
364
365
366
            if queue is not None:
                queue.put((val_logits, val_seeds))

            # gather evaluation result from multiple processes
            if proc_id == 0:
367
368
369
                val_loss, val_acc = collect_eval() if queue is not None else \
                    (F.cross_entropy(val_logits, labels[val_seeds].cpu()).item(), \
                    th.sum(val_logits.argmax(dim=1) == labels[val_seeds].cpu()).item() / len(val_seeds))
370

371
372
                do_test = val_acc > last_val_acc
                last_val_acc = val_acc
373
374
                print("Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
                        format(val_acc, val_loss))
375
376
        if n_gpus > 1:
            th.distributed.barrier()
377
378
379
380
381
            if proc_id == 0:
                for i in range(1, n_gpus):
                    queue.put(do_test)
            else:
                do_test = queue.get()
382

383
384
        vend = time.time()
        validation_time += (vend - vstart)
385

386
        if epoch == args.n_epochs - 1 or (epoch > 0 and do_test):
387
388
            tstart = time.time()
            if (queue is not None) or (proc_id == 0):
389
390
391
                test_logits, test_seeds = evaluate(model, embed_layer,
                                                   test_loader, node_feats,
                                                   inv_target)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
                if queue is not None:
                    queue.put((test_logits, test_seeds))

                # gather evaluation result from multiple processes
                if proc_id == 0:
                    test_loss, test_acc = collect_eval() if queue is not None else \
                        (F.cross_entropy(test_logits, labels[test_seeds].cpu()).item(), \
                        th.sum(test_logits.argmax(dim=1) == labels[test_seeds].cpu()).item() / len(test_seeds))
                    print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss))
                    print()
            tend = time.time()
            test_time += (tend-tstart)

            # sync for test
            if n_gpus > 1:
                th.distributed.barrier()
408
409
410
411

    print("{}/{} Mean forward time: {:4f}".format(proc_id, n_gpus,
                                                  np.mean(forward_time[len(forward_time) // 4:])))
    print("{}/{} Mean backward time: {:4f}".format(proc_id, n_gpus,
412
                                                   np.mean(backward_time[len(backward_time) // 4:])))
413
    if proc_id == 0:
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
414
        print("Final Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss))
415
        print("Train {}s, valid {}s, test {}s".format(train_time, validation_time, test_time))
416
417
418
419
420

def main(args, devices):
    # load graph data
    ogb_dataset = False
    if args.dataset == 'aifb':
421
        dataset = AIFBDataset()
422
    elif args.dataset == 'mutag':
423
        dataset = MUTAGDataset()
424
    elif args.dataset == 'bgs':
425
        dataset = BGSDataset()
426
    elif args.dataset == 'am':
427
        dataset = AMDataset()
428
429
430
    elif args.dataset == 'ogbn-mag':
        dataset = DglNodePropPredDataset(name=args.dataset)
        ogb_dataset = True
431
432
433
    else:
        raise ValueError()

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    if ogb_dataset is True:
        split_idx = dataset.get_idx_split()
        train_idx = split_idx["train"]['paper']
        val_idx = split_idx["valid"]['paper']
        test_idx = split_idx["test"]['paper']
        hg_orig, labels = dataset[0]
        subgs = {}
        for etype in hg_orig.canonical_etypes:
            u, v = hg_orig.all_edges(etype=etype)
            subgs[etype] = (u, v)
            subgs[(etype[2], 'rev-'+etype[1], etype[0])] = (v, u)
        hg = dgl.heterograph(subgs)
        hg.nodes['paper'].data['feat'] = hg_orig.nodes['paper'].data['feat']
        labels = labels['paper'].squeeze()

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        num_classes = dataset.num_classes
        if args.dataset == 'ogbn-mag':
            category = 'paper'
        print('Number of relations: {}'.format(num_rels))
        print('Number of class: {}'.format(num_classes))
        print('Number of train: {}'.format(len(train_idx)))
        print('Number of valid: {}'.format(len(val_idx)))
        print('Number of test: {}'.format(len(test_idx)))

460
    else:
461
462
463
464
465
466
467
468
469
470
        # Load from hetero-graph
        hg = dataset[0]

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        category = dataset.predict_category
        num_classes = dataset.num_classes
        train_mask = hg.nodes[category].data.pop('train_mask')
        test_mask = hg.nodes[category].data.pop('test_mask')
        labels = hg.nodes[category].data.pop('labels')
471
472
        train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
        test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
473
474
475
476
477
478
479
480
481

        # AIFB, MUTAG, BGS and AM datasets do not provide validation set split.
        # Split train set into train and validation if args.validation is set
        # otherwise use train set as the validation set.
        if args.validation:
            val_idx = train_idx[:len(train_idx) // 5]
            train_idx = train_idx[len(train_idx) // 5:]
        else:
            val_idx = train_idx
482

483
484
485
486
487
488
489
490
    node_feats = []
    for ntype in hg.ntypes:
        if len(hg.nodes[ntype].data) == 0 or args.node_feats is False:
            node_feats.append(hg.number_of_nodes(ntype))
        else:
            assert len(hg.nodes[ntype].data) == 1
            feat = hg.nodes[ntype].data.pop('feat')
            node_feats.append(feat.share_memory_())
491

492
493
494
495
496
    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i
497
498
499
500
501
502
503
504
505
        print('{}:{}'.format(i, ntype))

    g = dgl.to_homogeneous(hg)
    g.ndata['ntype'] = g.ndata[dgl.NTYPE]
    g.ndata['ntype'].share_memory_()
    g.edata['etype'] = g.edata[dgl.ETYPE]
    g.edata['etype'].share_memory_()
    g.ndata['type_id'] = g.ndata[dgl.NID]
    g.ndata['type_id'].share_memory_()
506
507
508
509
510
511
512
    node_ids = th.arange(g.number_of_nodes())

    # find out the target node ids
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]
    target_idx.share_memory_()
513
514
515
    train_idx.share_memory_()
    val_idx.share_memory_()
    test_idx.share_memory_()
516
517
518
519
520
521
522
523
524
525
526

    # This is a graph with multiple node types, so we want a way to map
    # our target node from their global node numberings, back to their
    # numberings within their type. This is used when taking the nodes in a
    # mini-batch, and looking up their type-specific labels
    inv_target = th.empty(node_ids.shape,
        dtype=node_ids.dtype)
    inv_target.share_memory_()
    inv_target[target_idx] = th.arange(0, target_idx.shape[0],
                                       dtype=inv_target.dtype)

527
528
529
    # Create csr/coo/csc formats before launching training processes with multi-gpu.
    # This avoids creating certain formats in each sub-process, which saves momory and CPU.
    g.create_formats_()
530
531

    n_gpus = len(devices)
532
    n_cpus = mp.cpu_count()
533
534
    # cpu
    if devices[0] == -1:
535
        run(0, 0, n_cpus, args, ['cpu'],
536
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
537
             inv_target, train_idx, val_idx, test_idx, labels), None)
538
539
    # gpu
    elif n_gpus == 1:
540
        run(0, n_gpus, n_cpus, args, devices,
541
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
542
             inv_target, train_idx, val_idx, test_idx, labels), None)
543
544
    # multi gpu
    else:
545
        queue = mp.Queue(n_gpus)
546
547
        procs = []
        for proc_id in range(n_gpus):
548
549
            # We use distributed data parallel dataloader to handle the data
            # splitting
550
            p = mp.Process(target=run, args=(proc_id, n_gpus, n_cpus // n_gpus, args, devices,
551
552
553
554
                                             (g, node_feats, num_of_ntype,
                                              num_classes, num_rels, target_idx,
                                              inv_target, train_idx, val_idx,
                                              test_idx, labels),
555
                                              queue))
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
            p.start()
            procs.append(p)
        for p in procs:
            p.join()


def config():
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=str, default='0',
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
572
573
    parser.add_argument("--sparse-lr", type=float, default=2e-2,
            help="sparse embedding learning rate")
574
575
576
577
578
579
580
581
582
583
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
584
    parser.add_argument("--fanout", type=str, default="4, 4",
585
586
587
588
589
590
591
592
            help="Fan-out of neighbor sampling.")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. ")
593
    parser.add_argument("--eval-batch-size", type=int, default=32,
594
            help="Mini-batch size. ")
595
596
597
598
    parser.add_argument("--num-workers", type=int, default=0,
            help="Number of workers for dataloader.")
    parser.add_argument("--low-mem", default=False, action='store_true',
            help="Whether use low mem RelGraphCov")
599
    parser.add_argument("--dgl-sparse", default=False, action='store_true',
600
            help='Use sparse embedding for node embeddings.')
601
602
    parser.add_argument("--embedding-gpu", default=False, action='store_true',
            help='Store the node embeddings on the GPU.')
603
604
605
606
    parser.add_argument('--node-feats', default=False, action='store_true',
            help='Whether use node features')
    parser.add_argument('--layer-norm', default=False, action='store_true',
            help='Use layer norm')
607
608
609
610
611
612
613
614
615
    parser.set_defaults(validation=True)
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = config()
    devices = list(map(int, args.gpu.split(',')))
    print(args)
    main(args, devices)