entity_classify_mp.py 25.3 KB
Newer Older
1
2
3
4
5
6
7
8
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
9
import argparse, gc
10
11
12
13
14
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
15
16
import dgl.multiprocessing as mp
from dgl.multiprocessing import Queue
17
18
19
20
21
22
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
import dgl
from dgl import DGLGraph
from functools import partial

23
from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
24
25
from model import RelGraphEmbedLayer
from dgl.nn import RelGraphConv
26
import tqdm
27
28

from ogb.nodeproppred import DglNodePropPredDataset
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

class EntityClassify(nn.Module):
    """ Entity classification class for RGCN
    Parameters
    ----------
    device : int
        Device to run the layer.
    num_nodes : int
        Number of nodes.
    h_dim : int
        Hidden dim size.
    out_dim : int
        Output dim size.
    num_rels : int
        Numer of relation types.
44
    num_bases : int, optional
45
        Number of bases. If is none, use number of relations.
46
47
        Default None
    num_hidden_layers : int, optional
48
        Number of hidden RelGraphConv Layer
49
50
51
52
53
54
55
56
        Default 1
    dropout : float, optional
        Dropout.
        Default 0
    use_self_loop : bool, optional
        Use self loop if True.
        Default True
    low_mem : bool, optional
57
58
        True to use low memory implementation of relation message passing function
        trade speed with memory consumption
59
60
61
62
        Default True
    layer_norm : bool, optional
        True to use layer norm.
        Default False
63
64
65
66
67
68
69
70
71
72
73
    """
    def __init__(self,
                 device,
                 num_nodes,
                 h_dim,
                 out_dim,
                 num_rels,
                 num_bases=None,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False,
74
                 low_mem=True,
75
                 layer_norm=False):
76
77
78
79
80
81
82
83
84
85
86
        super(EntityClassify, self).__init__()
        self.device = th.device(device if device >= 0 else 'cpu')
        self.num_nodes = num_nodes
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_rels = num_rels
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop
        self.low_mem = low_mem
87
        self.layer_norm = layer_norm
88
89
90
91
92
93

        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConv(
            self.h_dim, self.h_dim, self.num_rels, "basis",
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
94
            low_mem=self.low_mem, dropout=self.dropout, layer_norm = layer_norm))
95
96
97
98
99
        # h2h
        for idx in range(self.num_hidden_layers):
            self.layers.append(RelGraphConv(
                self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
100
                low_mem=self.low_mem, dropout=self.dropout, layer_norm = layer_norm))
101
102
103
104
105
        # h2o
        self.layers.append(RelGraphConv(
            self.h_dim, self.out_dim, self.num_rels, "basis",
            self.num_bases, activation=None,
            self_loop=self.use_self_loop,
106
            low_mem=self.low_mem, layer_norm = layer_norm))
107
108
109
110
111
112
113
114
115
116
117

    def forward(self, blocks, feats, norm=None):
        if blocks is None:
            # full graph training
            blocks = [self.g] * len(self.layers)
        h = feats
        for layer, block in zip(self.layers, blocks):
            block = block.to(self.device)
            h = layer(block, h, block.edata['etype'], block.edata['norm'])
        return h

118
119
120
121
122
123
124
125
def gen_norm(g):
    _, v, eid = g.all_edges(form='all')
    _, inverse_index, count = th.unique(v, return_inverse=True, return_counts=True)
    degrees = count[inverse_index]
    norm = th.ones(eid.shape[0], device=eid.device) / degrees
    norm = norm.unsqueeze(1)
    g.edata['norm'] = norm

126
def evaluate(model, embed_layer, eval_loader, node_feats, inv_target):
127
128
129
130
    model.eval()
    embed_layer.eval()
    eval_logits = []
    eval_seeds = []
131

132
    with th.no_grad():
133
        th.cuda.empty_cache()
134
        for sample_data in tqdm.tqdm(eval_loader):
135
136
137
138
139
            inputs, seeds, blocks = sample_data
            seeds = inv_target[seeds]

            for block in blocks:
                gen_norm(block)
140

141
            feats = embed_layer(blocks[0].srcdata[dgl.NID],
142
143
144
                                blocks[0].srcdata['ntype'],
                                blocks[0].srcdata['type_id'],
                                node_feats)
145
146
147
            logits = model(blocks, feats)
            eval_logits.append(logits.cpu().detach())
            eval_seeds.append(seeds.cpu().detach())
148

149
150
151
    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)

152
    return eval_logits, eval_seeds
153

154
def run(proc_id, n_gpus, n_cpus, args, devices, dataset, split, queue=None):
155
    dev_id = devices[proc_id] if devices[proc_id] != 'cpu' else -1
156
    g, node_feats, num_of_ntype, num_classes, num_rels, target_idx, \
157
        inv_target, train_idx, val_idx, test_idx, labels = dataset
158
159
160
161
162
    if split is not None:
        train_seed, val_seed, test_seed = split
        train_idx = train_idx[train_seed]
        val_idx = val_idx[val_seed]
        test_idx = test_idx[test_seed]
163

164
    fanouts = [int(fanout) for fanout in args.fanout.split(',')]
165
166
    node_tids = g.ndata[dgl.NTYPE]

167
    world_size = n_gpus
168
169
170
171
    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        backend = 'nccl'
172

173
174
        # using sparse embedding or using mix_cpu_gpu model (embedding model can not be stored in GPU)
        if dev_id < 0 or args.dgl_sparse is False:
175
            backend = 'gloo'
176
        print("backend using {}".format(backend))
177
178
179
        th.distributed.init_process_group(backend=backend,
                                          init_method=dist_init_method,
                                          world_size=world_size,
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
                                          rank=proc_id)



    sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts)
    loader = dgl.dataloading.NodeDataLoader(
        g,
        target_idx[train_idx],
        sampler,
        use_ddp=n_gpus > 1,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False,
        num_workers=args.num_workers)

    # validation sampler
    val_loader = dgl.dataloading.NodeDataLoader(
        g,
        target_idx[val_idx],
        sampler,
        use_ddp=n_gpus > 1,
        batch_size=args.batch_size,
        shuffle=False,
        drop_last=False,
        num_workers=args.num_workers)

    # test sampler
    test_sampler = dgl.dataloading.MultiLayerNeighborSampler([None] * args.n_layers)
    test_loader = dgl.dataloading.NodeDataLoader(
        g,
        target_idx[test_idx],
        test_sampler,
        use_ddp=n_gpus > 1,
        batch_size=args.eval_batch_size,
        shuffle=False,
        drop_last=False,
        num_workers=args.num_workers)
217
218
219

    # node features
    # None for one-hot feature, if not none, it should be the feature tensor.
220
    #
221
222
    embed_layer = RelGraphEmbedLayer(dev_id if args.embedding_gpu or not args.dgl_sparse else -1,
                                     dev_id,
223
224
225
226
227
                                     g.number_of_nodes(),
                                     node_tids,
                                     num_of_ntype,
                                     node_feats,
                                     args.n_hidden,
228
                                     dgl_sparse=args.dgl_sparse)
229
230

    # create model
231
    # all model params are in device.
232
233
234
235
236
237
238
239
240
    model = EntityClassify(dev_id,
                           g.number_of_nodes(),
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop,
241
242
                           low_mem=args.low_mem,
                           layer_norm=args.layer_norm)
243

244
    if dev_id >= 0 and n_gpus == 1:
245
246
247
        th.cuda.set_device(dev_id)
        labels = labels.to(dev_id)
        model.cuda(dev_id)
248
249
        # with dgl_sparse emb, only node embedding is not in GPU
        if args.dgl_sparse:
250
251
252
            embed_layer.cuda(dev_id)

    if n_gpus > 1:
253
        labels = labels.to(dev_id)
254
255
        if dev_id >= 0:
            model.cuda(dev_id)
256
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
257
258
259
260
261
262
263
        if args.dgl_sparse:
            embed_layer.cuda(dev_id)
            if len(list(embed_layer.parameters())) > 0:
                embed_layer = DistributedDataParallel(embed_layer, device_ids=[dev_id], output_device=dev_id)
        else:
            if len(list(embed_layer.parameters())) > 0:
                embed_layer = DistributedDataParallel(embed_layer, device_ids=None, output_device=None)
264
265

    # optimizer
266
267
    dense_params = list(model.parameters())
    if args.node_feats:
268
        if  n_gpus > 1:
269
            dense_params += list(embed_layer.module.embeds.parameters())
270
        else:
271
272
273
274
            dense_params += list(embed_layer.embeds.parameters())
    optimizer = th.optim.Adam(dense_params, lr=args.lr, weight_decay=args.l2norm)

    if args.dgl_sparse:
275
        all_params = list(model.parameters()) + list(embed_layer.parameters())
276
        optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)
277
278
279
280
281
282
283
284
285
286
287
        if n_gpus > 1 and isinstance(embed_layer, DistributedDataParallel):
            dgl_emb = embed_layer.module.dgl_emb
        else:
            dgl_emb = embed_layer.dgl_emb
        emb_optimizer = dgl.optim.SparseAdam(params=dgl_emb, lr=args.sparse_lr, eps=1e-8) if len(dgl_emb) > 0 else None
    else:
        if n_gpus > 1:
            embs = list(embed_layer.module.node_embeds.parameters())
        else:
            embs = list(embed_layer.node_embeds.parameters())
        emb_optimizer = th.optim.SparseAdam(embs, lr=args.sparse_lr) if len(embs) > 0 else None
288
289
290
291
292
293

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []

294
295
296
297
    train_time = 0
    validation_time = 0
    test_time = 0
    last_val_acc = 0.0
298
    do_test = False
299
300
    if n_gpus > 1 and n_cpus - args.num_workers > 0:
        th.set_num_threads(n_cpus-args.num_workers)
301
    for epoch in range(args.n_epochs):
302
        tstart = time.time()
303
        model.train()
304
        embed_layer.train()
305
306

        for i, sample_data in enumerate(loader):
307
308
309
310
311
312
313
314
            input_nodes, seeds, blocks = sample_data
            # map the seed nodes back to their type-specific ids, so that they
            # can be used to look up their respective labels
            seeds = inv_target[seeds]

            for block in blocks:
                gen_norm(block)

315
            t0 = time.time()
316
            feats = embed_layer(blocks[0].srcdata[dgl.NID],
317
                                blocks[0].srcdata['ntype'],
318
                                blocks[0].srcdata['type_id'],
319
320
321
322
                                node_feats)
            logits = model(blocks, feats)
            loss = F.cross_entropy(logits, labels[seeds])
            t1 = time.time()
323
            optimizer.zero_grad()
324
            if emb_optimizer is not None:
325
326
                emb_optimizer.zero_grad()

327
            loss.backward()
328
            if emb_optimizer is not None:
329
                emb_optimizer.step()
330
            optimizer.step()
331
332
333
334
335
            t2 = time.time()

            forward_time.append(t1 - t0)
            backward_time.append(t2 - t1)
            train_acc = th.sum(logits.argmax(dim=1) == labels[seeds]).item() / len(seeds)
336
            if i % 100 == 0 and proc_id == 0:
337
338
                print("Train Accuracy: {:.4f} | Train Loss: {:.4f}".
                    format(train_acc, loss.item()))
339
        gc.collect()
340
        print("Epoch {:05d}:{:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            format(epoch, args.n_epochs, forward_time[-1], backward_time[-1]))
        tend = time.time()
        train_time += (tend - tstart)

        def collect_eval():
            eval_logits = []
            eval_seeds = []
            for i in range(n_gpus):
                log = queue.get()
                eval_l, eval_s = log
                eval_logits.append(eval_l)
                eval_seeds.append(eval_s)
            eval_logits = th.cat(eval_logits)
            eval_seeds = th.cat(eval_seeds)
            eval_loss = F.cross_entropy(eval_logits, labels[eval_seeds].cpu()).item()
            eval_acc = th.sum(eval_logits.argmax(dim=1) == labels[eval_seeds].cpu()).item() / len(eval_seeds)

            return eval_loss, eval_acc

        vstart = time.time()
361
        if (queue is not None) or (proc_id == 0):
362
363
            val_logits, val_seeds = evaluate(model, embed_layer, val_loader,
                                             node_feats, inv_target)
364
365
366
367
368
            if queue is not None:
                queue.put((val_logits, val_seeds))

            # gather evaluation result from multiple processes
            if proc_id == 0:
369
370
371
                val_loss, val_acc = collect_eval() if queue is not None else \
                    (F.cross_entropy(val_logits, labels[val_seeds].cpu()).item(), \
                    th.sum(val_logits.argmax(dim=1) == labels[val_seeds].cpu()).item() / len(val_seeds))
372

373
374
                do_test = val_acc > last_val_acc
                last_val_acc = val_acc
375
376
                print("Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
                        format(val_acc, val_loss))
377
378
        if n_gpus > 1:
            th.distributed.barrier()
379
380
381
382
383
            if proc_id == 0:
                for i in range(1, n_gpus):
                    queue.put(do_test)
            else:
                do_test = queue.get()
384

385
386
        vend = time.time()
        validation_time += (vend - vstart)
387

388
        if epoch == args.n_epochs - 1 or (epoch > 0 and do_test):
389
390
            tstart = time.time()
            if (queue is not None) or (proc_id == 0):
391
392
393
                test_logits, test_seeds = evaluate(model, embed_layer,
                                                   test_loader, node_feats,
                                                   inv_target)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
                if queue is not None:
                    queue.put((test_logits, test_seeds))

                # gather evaluation result from multiple processes
                if proc_id == 0:
                    test_loss, test_acc = collect_eval() if queue is not None else \
                        (F.cross_entropy(test_logits, labels[test_seeds].cpu()).item(), \
                        th.sum(test_logits.argmax(dim=1) == labels[test_seeds].cpu()).item() / len(test_seeds))
                    print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss))
                    print()
            tend = time.time()
            test_time += (tend-tstart)

            # sync for test
            if n_gpus > 1:
                th.distributed.barrier()
410
411
412
413

    print("{}/{} Mean forward time: {:4f}".format(proc_id, n_gpus,
                                                  np.mean(forward_time[len(forward_time) // 4:])))
    print("{}/{} Mean backward time: {:4f}".format(proc_id, n_gpus,
414
                                                   np.mean(backward_time[len(backward_time) // 4:])))
415
    if proc_id == 0:
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
416
        print("Final Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss))
417
        print("Train {}s, valid {}s, test {}s".format(train_time, validation_time, test_time))
418
419
420
421
422

def main(args, devices):
    # load graph data
    ogb_dataset = False
    if args.dataset == 'aifb':
423
        dataset = AIFBDataset()
424
    elif args.dataset == 'mutag':
425
        dataset = MUTAGDataset()
426
    elif args.dataset == 'bgs':
427
        dataset = BGSDataset()
428
    elif args.dataset == 'am':
429
        dataset = AMDataset()
430
431
432
    elif args.dataset == 'ogbn-mag':
        dataset = DglNodePropPredDataset(name=args.dataset)
        ogb_dataset = True
433
434
435
    else:
        raise ValueError()

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    if ogb_dataset is True:
        split_idx = dataset.get_idx_split()
        train_idx = split_idx["train"]['paper']
        val_idx = split_idx["valid"]['paper']
        test_idx = split_idx["test"]['paper']
        hg_orig, labels = dataset[0]
        subgs = {}
        for etype in hg_orig.canonical_etypes:
            u, v = hg_orig.all_edges(etype=etype)
            subgs[etype] = (u, v)
            subgs[(etype[2], 'rev-'+etype[1], etype[0])] = (v, u)
        hg = dgl.heterograph(subgs)
        hg.nodes['paper'].data['feat'] = hg_orig.nodes['paper'].data['feat']
        labels = labels['paper'].squeeze()

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        num_classes = dataset.num_classes
        if args.dataset == 'ogbn-mag':
            category = 'paper'
        print('Number of relations: {}'.format(num_rels))
        print('Number of class: {}'.format(num_classes))
        print('Number of train: {}'.format(len(train_idx)))
        print('Number of valid: {}'.format(len(val_idx)))
        print('Number of test: {}'.format(len(test_idx)))

462
    else:
463
464
465
466
467
468
469
470
471
472
        # Load from hetero-graph
        hg = dataset[0]

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        category = dataset.predict_category
        num_classes = dataset.num_classes
        train_mask = hg.nodes[category].data.pop('train_mask')
        test_mask = hg.nodes[category].data.pop('test_mask')
        labels = hg.nodes[category].data.pop('labels')
473
474
        train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
        test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
475
476
477
478
479
480
481
482
483

        # AIFB, MUTAG, BGS and AM datasets do not provide validation set split.
        # Split train set into train and validation if args.validation is set
        # otherwise use train set as the validation set.
        if args.validation:
            val_idx = train_idx[:len(train_idx) // 5]
            train_idx = train_idx[len(train_idx) // 5:]
        else:
            val_idx = train_idx
484

485
486
487
488
489
490
491
492
    node_feats = []
    for ntype in hg.ntypes:
        if len(hg.nodes[ntype].data) == 0 or args.node_feats is False:
            node_feats.append(hg.number_of_nodes(ntype))
        else:
            assert len(hg.nodes[ntype].data) == 1
            feat = hg.nodes[ntype].data.pop('feat')
            node_feats.append(feat.share_memory_())
493

494
495
496
497
498
    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i
499
500
501
502
503
504
505
506
507
        print('{}:{}'.format(i, ntype))

    g = dgl.to_homogeneous(hg)
    g.ndata['ntype'] = g.ndata[dgl.NTYPE]
    g.ndata['ntype'].share_memory_()
    g.edata['etype'] = g.edata[dgl.ETYPE]
    g.edata['etype'].share_memory_()
    g.ndata['type_id'] = g.ndata[dgl.NID]
    g.ndata['type_id'].share_memory_()
508
509
510
511
512
513
514
    node_ids = th.arange(g.number_of_nodes())

    # find out the target node ids
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]
    target_idx.share_memory_()
515
516
517
    train_idx.share_memory_()
    val_idx.share_memory_()
    test_idx.share_memory_()
518
519
520
521
522
523
524
525
526
527
528

    # This is a graph with multiple node types, so we want a way to map
    # our target node from their global node numberings, back to their
    # numberings within their type. This is used when taking the nodes in a
    # mini-batch, and looking up their type-specific labels
    inv_target = th.empty(node_ids.shape,
        dtype=node_ids.dtype)
    inv_target.share_memory_()
    inv_target[target_idx] = th.arange(0, target_idx.shape[0],
                                       dtype=inv_target.dtype)

529
530
531
    # Create csr/coo/csc formats before launching training processes with multi-gpu.
    # This avoids creating certain formats in each sub-process, which saves momory and CPU.
    g.create_formats_()
532
533

    n_gpus = len(devices)
534
    n_cpus = mp.cpu_count()
535
536
    # cpu
    if devices[0] == -1:
537
        run(0, 0, n_cpus, args, ['cpu'],
538
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
539
             inv_target, train_idx, val_idx, test_idx, labels), None, None)
540
541
    # gpu
    elif n_gpus == 1:
542
        run(0, n_gpus, n_cpus, args, devices,
543
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
544
             inv_target, train_idx, val_idx, test_idx, labels), None, None)
545
546
    # multi gpu
    else:
547
        queue = mp.Queue(n_gpus)
548
549
        procs = []
        num_train_seeds = train_idx.shape[0]
550
551
552
553
554
        num_valid_seeds = val_idx.shape[0]
        num_test_seeds = test_idx.shape[0]
        train_seeds = th.randperm(num_train_seeds)
        valid_seeds = th.randperm(num_valid_seeds)
        test_seeds = th.randperm(num_test_seeds)
555
        tseeds_per_proc = num_train_seeds // n_gpus
556
557
        vseeds_per_proc = num_valid_seeds // n_gpus
        tstseeds_per_proc = num_test_seeds // n_gpus
558
        for proc_id in range(n_gpus):
559
560
561
562
563
564
565
566
567
568
569
570
571
572
            # we have multi-gpu for training, evaluation and testing
            # so split trian set, valid set and test set into num-of-gpu parts.
            proc_train_seeds = train_seeds[proc_id * tseeds_per_proc :
                                           (proc_id + 1) * tseeds_per_proc \
                                           if (proc_id + 1) * tseeds_per_proc < num_train_seeds \
                                           else num_train_seeds]
            proc_valid_seeds = valid_seeds[proc_id * vseeds_per_proc :
                                           (proc_id + 1) * vseeds_per_proc \
                                           if (proc_id + 1) * vseeds_per_proc < num_valid_seeds \
                                           else num_valid_seeds]
            proc_test_seeds = test_seeds[proc_id * tstseeds_per_proc :
                                         (proc_id + 1) * tstseeds_per_proc \
                                         if (proc_id + 1) * tstseeds_per_proc < num_test_seeds \
                                         else num_test_seeds]
573
            p = mp.Process(target=run, args=(proc_id, n_gpus, n_cpus // n_gpus, args, devices,
574
575
576
577
                                             (g, node_feats, num_of_ntype,
                                              num_classes, num_rels, target_idx,
                                              inv_target, train_idx, val_idx,
                                              test_idx, labels),
578
579
                                             (proc_train_seeds, proc_valid_seeds, proc_test_seeds),
                                             queue))
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
            p.start()
            procs.append(p)
        for p in procs:
            p.join()


def config():
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=str, default='0',
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
596
597
    parser.add_argument("--sparse-lr", type=float, default=2e-2,
            help="sparse embedding learning rate")
598
599
600
601
602
603
604
605
606
607
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
608
    parser.add_argument("--fanout", type=str, default="4, 4",
609
610
611
612
613
614
615
616
            help="Fan-out of neighbor sampling.")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. ")
617
    parser.add_argument("--eval-batch-size", type=int, default=32,
618
            help="Mini-batch size. ")
619
620
621
622
    parser.add_argument("--num-workers", type=int, default=0,
            help="Number of workers for dataloader.")
    parser.add_argument("--low-mem", default=False, action='store_true',
            help="Whether use low mem RelGraphCov")
623
    parser.add_argument("--dgl-sparse", default=False, action='store_true',
624
            help='Use sparse embedding for node embeddings.')
625
626
    parser.add_argument("--embedding-gpu", default=False, action='store_true',
            help='Store the node embeddings on the GPU.')
627
628
629
630
    parser.add_argument('--node-feats', default=False, action='store_true',
            help='Whether use node features')
    parser.add_argument('--layer-norm', default=False, action='store_true',
            help='Use layer norm')
631
632
633
634
635
636
637
638
639
    parser.set_defaults(validation=True)
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = config()
    devices = list(map(int, args.gpu.split(',')))
    print(args)
    main(args, devices)