Unverified Commit 1e3fcc7c authored by xiang song(charlie.song)'s avatar xiang song(charlie.song) Committed by GitHub
Browse files

update comments (#2132)


Co-authored-by: default avatarUbuntu <ubuntu@ip-172-31-51-214.ec2.internal>
parent 7993a4d8
...@@ -403,6 +403,8 @@ if __name__ == '__main__': ...@@ -403,6 +403,8 @@ if __name__ == '__main__':
run(0, n_gpus, args, devices, dataset) run(0, n_gpus, args, devices, dataset)
# multi gpu # multi gpu
else: else:
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves momory and CPU.
dataset.train_enc_graph.create_formats_() dataset.train_enc_graph.create_formats_()
dataset.train_dec_graph.create_formats_() dataset.train_dec_graph.create_formats_()
procs = [] procs = []
......
...@@ -384,6 +384,8 @@ if __name__ == '__main__': ...@@ -384,6 +384,8 @@ if __name__ == '__main__':
g.ndata['features'] = features.share_memory_() g.ndata['features'] = features.share_memory_()
create_history_storage(g, args, n_classes) create_history_storage(g, args, n_classes)
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves momory and CPU.
g.create_formats_() g.create_formats_()
# Pack data # Pack data
data = train_mask, val_mask, in_feats, labels, n_classes, g data = train_mask, val_mask, in_feats, labels, n_classes, g
......
...@@ -229,6 +229,8 @@ if __name__ == '__main__': ...@@ -229,6 +229,8 @@ if __name__ == '__main__':
else: else:
train_g = val_g = test_g = g train_g = val_g = test_g = g
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves momory and CPU.
train_g.create_formats_() train_g.create_formats_()
val_g.create_formats_() val_g.create_formats_()
test_g.create_formats_() test_g.create_formats_()
......
...@@ -258,6 +258,8 @@ if __name__ == '__main__': ...@@ -258,6 +258,8 @@ if __name__ == '__main__':
else: else:
train_g = val_g = test_g = g train_g = val_g = test_g = g
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves momory and CPU.
train_g.create_formats_() train_g.create_formats_()
val_g.create_formats_() val_g.create_formats_()
test_g.create_formats_() test_g.create_formats_()
......
...@@ -298,6 +298,9 @@ def main(args, devices): ...@@ -298,6 +298,9 @@ def main(args, devices):
val_mask = g.ndata['val_mask'] val_mask = g.ndata['val_mask']
test_mask = g.ndata['test_mask'] test_mask = g.ndata['test_mask']
g.ndata['features'] = features g.ndata['features'] = features
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves momory and CPU.
g.create_formats_() g.create_formats_()
# Pack data # Pack data
data = train_mask, val_mask, test_mask, in_feats, labels, n_classes, g data = train_mask, val_mask, test_mask, in_feats, labels, n_classes, g
......
...@@ -63,9 +63,4 @@ class ClusterIter(object): ...@@ -63,9 +63,4 @@ class ClusterIter(object):
def subgraph_collate_fn(g, batch): def subgraph_collate_fn(g, batch):
nids = np.concatenate(batch).reshape(-1).astype(np.int64) nids = np.concatenate(batch).reshape(-1).astype(np.int64)
g1 = g.subgraph(nids) g1 = g.subgraph(nids)
nid = g1.ndata[dgl.NID]
g1.ndata['feat'] = g.ndata['feat'][nid]
g1.ndata['labels'] = g.ndata['labels'][nid]
g1.ndata['train_mask'] = g.ndata['train_mask'][nid]
g1.create_formats_()
return g1 return g1
...@@ -243,6 +243,9 @@ if __name__ == '__main__': ...@@ -243,6 +243,9 @@ if __name__ == '__main__':
in_feats = graph.ndata['feat'].shape[1] in_feats = graph.ndata['feat'].shape[1]
n_classes = (labels.max() + 1).item() n_classes = (labels.max() + 1).item()
# Create csr/coo/csc formats before launching sampling processes
# This avoids creating certain formats in each data loader process, which saves momory and CPU.
graph.create_formats_() graph.create_formats_()
# Pack data # Pack data
data = train_idx, val_idx, test_idx, in_feats, labels, n_classes, graph, args.head data = train_idx, val_idx, test_idx, in_feats, labels, n_classes, graph, args.head
......
...@@ -234,6 +234,8 @@ if __name__ == '__main__': ...@@ -234,6 +234,8 @@ if __name__ == '__main__':
in_feats = graph.ndata['feat'].shape[1] in_feats = graph.ndata['feat'].shape[1]
n_classes = (labels.max() + 1).item() n_classes = (labels.max() + 1).item()
# Create csr/coo/csc formats before launching sampling processes
# This avoids creating certain formats in each data loader process, which saves momory and CPU.
graph.create_formats_() graph.create_formats_()
# Pack data # Pack data
data = train_idx, val_idx, test_idx, in_feats, labels, n_classes, graph data = train_idx, val_idx, test_idx, in_feats, labels, n_classes, graph
......
...@@ -504,6 +504,9 @@ def main(args, devices): ...@@ -504,6 +504,9 @@ def main(args, devices):
train_idx.share_memory_() train_idx.share_memory_()
val_idx.share_memory_() val_idx.share_memory_()
test_idx.share_memory_() test_idx.share_memory_()
# Create csr/coo/csc formats before launching training processes with multi-gpu.
# This avoids creating certain formats in each sub-process, which saves momory and CPU.
g.create_formats_()
n_gpus = len(devices) n_gpus = len(devices)
# cpu # cpu
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment