entity_classify_mp.py 17.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
import argparse
import itertools
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
from torch.multiprocessing import Queue
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
import dgl
from dgl import DGLGraph
from functools import partial

from dgl.data.rdf import AIFB, MUTAG, BGS, AM
from model import RelGraphEmbedLayer
from dgl.nn import RelGraphConv
from utils import thread_wrapped_func

class EntityClassify(nn.Module):
    """ Entity classification class for RGCN
    Parameters
    ----------
    device : int
        Device to run the layer.
    num_nodes : int
        Number of nodes.
    h_dim : int
        Hidden dim size.
    out_dim : int
        Output dim size.
    num_rels : int
        Numer of relation types.
    num_bases : int
        Number of bases. If is none, use number of relations.
    num_hidden_layers : int
        Number of hidden RelGraphConv Layer
    dropout : float
        Dropout
    use_self_loop : bool
        Use self loop if True, default False.
    low_mem : bool
        True to use low memory implementation of relation message passing function
        trade speed with memory consumption
    """
    def __init__(self,
                 device,
                 num_nodes,
                 h_dim,
                 out_dim,
                 num_rels,
                 num_bases=None,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False,
                 low_mem=False):
        super(EntityClassify, self).__init__()
        self.device = th.device(device if device >= 0 else 'cpu')
        self.num_nodes = num_nodes
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_rels = num_rels
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop
        self.low_mem = low_mem

        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConv(
            self.h_dim, self.h_dim, self.num_rels, "basis",
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
            low_mem=self.low_mem, dropout=self.dropout))
        # h2h
        for idx in range(self.num_hidden_layers):
            self.layers.append(RelGraphConv(
                self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                low_mem=self.low_mem, dropout=self.dropout))
        # h2o
        self.layers.append(RelGraphConv(
            self.h_dim, self.out_dim, self.num_rels, "basis",
            self.num_bases, activation=None,
            self_loop=self.use_self_loop,
            low_mem=self.low_mem))

    def forward(self, blocks, feats, norm=None):
        if blocks is None:
            # full graph training
            blocks = [self.g] * len(self.layers)
        h = feats
        for layer, block in zip(self.layers, blocks):
            block = block.to(self.device)
            h = layer(block, h, block.edata['etype'], block.edata['norm'])
        return h

class NeighborSampler:
    """Neighbor sampler
    Parameters
    ----------
    g : DGLHeterograph
        Full graph
    target_idx : tensor
        The target training node IDs in g
    fanouts : list of int
        Fanout of each hop starting from the seed nodes. If a fanout is None,
        sample full neighbors.
    """
    def __init__(self, g, target_idx, fanouts):
        self.g = g
        self.target_idx = target_idx
        self.fanouts = fanouts

    """Do neighbor sample
    Parameters
    ----------
    seeds :
        Seed nodes
    Returns
    -------
    tensor
        Seed nodes, also known as target nodes
    blocks
        Sampled subgraphs
    """
    def sample_blocks(self, seeds):
        blocks = []
        etypes = []
        norms = []
        ntypes = []
        seeds = th.tensor(seeds).long()
        cur = self.target_idx[seeds]
        for fanout in self.fanouts:
            if fanout is None or fanout == -1:
                frontier = dgl.in_subgraph(self.g, cur)
            else:
                frontier = dgl.sampling.sample_neighbors(self.g, cur, fanout)
            etypes = self.g.edata[dgl.ETYPE][frontier.edata[dgl.EID]]
            norm = self.g.edata['norm'][frontier.edata[dgl.EID]]
            block = dgl.to_block(frontier, cur)
            block.srcdata[dgl.NTYPE] = self.g.ndata[dgl.NTYPE][block.srcdata[dgl.NID]]
            block.edata['etype'] = etypes
            block.edata['norm'] = norm
            cur = block.srcdata[dgl.NID]
            blocks.insert(0, block)
        return seeds, blocks

@thread_wrapped_func
def run(proc_id, n_gpus, args, devices, dataset):
    dev_id = devices[proc_id]
    g, num_of_ntype, num_classes, num_rels, target_idx, \
        train_idx, val_idx, test_idx, labels = dataset

    node_tids = g.ndata[dgl.NTYPE]
    sampler = NeighborSampler(g, target_idx, [args.fanout] * args.n_layers)
    loader = DataLoader(dataset=train_idx.numpy(),
                        batch_size=args.batch_size,
                        collate_fn=sampler.sample_blocks,
                        shuffle=True,
                        num_workers=args.num_workers)

    # validation sampler
    val_sampler = NeighborSampler(g, target_idx, [None] * args.n_layers)
    val_loader = DataLoader(dataset=val_idx.numpy(),
                            batch_size=args.batch_size,
                            collate_fn=val_sampler.sample_blocks,
                            shuffle=False,
                            num_workers=args.num_workers)

    # validation sampler
    test_sampler = NeighborSampler(g, target_idx, [None] * args.n_layers)
    test_loader = DataLoader(dataset=test_idx.numpy(),
                             batch_size=args.batch_size,
                             collate_fn=test_sampler.sample_blocks,
                             shuffle=False,
                             num_workers=args.num_workers)

    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        world_size = n_gpus
        backend = 'nccl'
        if args.sparse_embedding:
            backend = 'gloo'
        th.distributed.init_process_group(backend=backend,
                                          init_method=dist_init_method,
                                          world_size=world_size,
                                          rank=dev_id)

    # node features
    # None for one-hot feature, if not none, it should be the feature tensor.
    node_feats = [None] * num_of_ntype
    embed_layer = RelGraphEmbedLayer(dev_id,
                                     g.number_of_nodes(),
                                     node_tids,
                                     num_of_ntype,
                                     node_feats,
                                     args.n_hidden,
                                     sparse_emb=args.sparse_embedding)

    # create model
    model = EntityClassify(dev_id,
                           g.number_of_nodes(),
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop,
                           low_mem=args.low_mem)

    if dev_id >= 0:
        th.cuda.set_device(dev_id)
        labels = labels.to(dev_id)
        model.cuda(dev_id)
        # embedding layer may not fit into GPU, then use mix_cpu_gpu
        if args.mix_cpu_gpu is False:
            embed_layer.cuda(dev_id)

    if n_gpus > 1:
        embed_layer = DistributedDataParallel(embed_layer, device_ids=[dev_id], output_device=dev_id)
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)

    # optimizer
    if args.sparse_embedding:
        optimizer = th.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2norm)
        emb_optimizer = th.optim.SparseAdam(embed_layer.parameters(), lr=args.lr)
    else:
        all_params = itertools.chain(model.parameters(), embed_layer.parameters())
        optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []

    for epoch in range(args.n_epochs):
        model.train()
        optimizer.zero_grad()
        if args.sparse_embedding:
            emb_optimizer.zero_grad()

        for i, sample_data in enumerate(loader):
            seeds, blocks = sample_data
            t0 = time.time()
            feats = embed_layer(blocks[0].srcdata[dgl.NID].to(dev_id),
                                blocks[0].srcdata[dgl.NTYPE].to(dev_id),
                                node_feats)
            logits = model(blocks, feats)

            loss = F.cross_entropy(logits, labels[seeds])
            t1 = time.time()
            loss.backward()
            optimizer.step()
            if args.sparse_embedding:
                emb_optimizer.step()
            t2 = time.time()

            forward_time.append(t1 - t0)
            backward_time.append(t2 - t1)
            print("Epoch {:05d}:{:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
                   format(epoch, i, forward_time[-1], backward_time[-1]))
            train_acc = th.sum(logits.argmax(dim=1) == labels[seeds]).item() / len(seeds)
            print("Train Accuracy: {:.4f} | Train Loss: {:.4f}".
                  format(train_acc, loss.item()))

        # only process 0 will do the evaluation
        if proc_id == 0:
            model.eval()
            eval_logtis = []
            eval_seeds = []
            for i, sample_data in enumerate(val_loader):
                seeds, blocks = sample_data
                feats = embed_layer(blocks[0].srcdata[dgl.NID].to(dev_id),
                                    blocks[0].srcdata[dgl.NTYPE].to(dev_id),
                                    node_feats)
                logits = model(blocks, feats)
                eval_logtis.append(logits)
                eval_seeds.append(seeds)
            eval_logtis = th.cat(eval_logtis)
            eval_seeds = th.cat(eval_seeds)
            val_loss = F.cross_entropy(eval_logtis, labels[eval_seeds])
            val_acc = th.sum(eval_logtis.argmax(dim=1) == labels[eval_seeds]).item() / len(eval_seeds)
            print("Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
                    format(val_acc, val_loss.item()))
        if n_gpus > 1:
            th.distributed.barrier()
    print()

    # only process 0 will do the testing
    if proc_id == 0:
        model.eval()
        test_logtis = []
        test_seeds = []
        for i, sample_data in enumerate(test_loader):
            seeds, blocks = sample_data
            feats = embed_layer(blocks[0].srcdata[dgl.NID].to(dev_id),
                                blocks[0].srcdata[dgl.NTYPE].to(dev_id),
                                [None] * num_of_ntype)
            logits = model(blocks, feats)
            test_logtis.append(logits)
            test_seeds.append(seeds)
        test_logtis = th.cat(test_logtis)
        test_seeds = th.cat(test_seeds)
        test_loss = F.cross_entropy(test_logtis, labels[test_seeds])
        test_acc = th.sum(test_logtis.argmax(dim=1) == labels[test_seeds]).item() / len(test_seeds)
        print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.item()))
        print()

    print("{}/{} Mean forward time: {:4f}".format(proc_id, n_gpus,
                                                  np.mean(forward_time[len(forward_time) // 4:])))
    print("{}/{} Mean backward time: {:4f}".format(proc_id, n_gpus,
                                                   np.mean(backward_time[len(backward_time) // 4:]))) 

def main(args, devices):
    # load graph data
    ogb_dataset = False
    if args.dataset == 'aifb':
        dataset = AIFB()
    elif args.dataset == 'mutag':
        dataset = MUTAG()
    elif args.dataset == 'bgs':
        dataset = BGS()
    elif args.dataset == 'am':
        dataset = AM()
    else:
        raise ValueError()

    # Load from hetero-graph
    hg = dataset.graph

    num_rels = len(hg.canonical_etypes)
    num_of_ntype = len(hg.ntypes)
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_idx = dataset.train_idx
    test_idx = dataset.test_idx
    labels = dataset.labels

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # calculate norm for each edge type and store in edge
    for canonical_etypes in hg.canonical_etypes:
        u, v, eid = hg.all_edges(form='all', etype=canonical_etypes)
        _, inverse_index, count = th.unique(v, return_inverse=True, return_counts=True)
        degrees = count[inverse_index]
        norm = th.ones(eid.shape[0]) / degrees
        norm = norm.unsqueeze(1)
        hg.edges[canonical_etypes].data['norm'] = norm
    
    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i

    g = dgl.to_homo(hg)
    g.ndata[dgl.NTYPE].share_memory_()
    g.edata[dgl.ETYPE].share_memory_()
    g.edata['norm'].share_memory_()
    node_ids = th.arange(g.number_of_nodes())

    # find out the target node ids
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]
    target_idx.share_memory_()

    n_gpus = len(devices)
    # cpu
    if devices[0] == -1:
        run(0, 0, args, ['cpu'], 
            (g, num_of_ntype, num_classes, num_rels, target_idx,
             train_idx, val_idx, test_idx, labels))
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, args, devices,
            (g, num_of_ntype, num_classes, num_rels, target_idx,
            train_idx, val_idx, test_idx, labels))
    # multi gpu
    else:
        procs = []
        num_train_seeds = train_idx.shape[0]
        tseeds_per_proc = num_train_seeds // n_gpus
        for proc_id in range(n_gpus):
            proc_train_seeds = train_idx[proc_id * tseeds_per_proc :
                                         (proc_id + 1) * tseeds_per_proc \
                                         if (proc_id + 1) * tseeds_per_proc < num_train_seeds \
                                         else num_train_seeds]
            p = mp.Process(target=run, args=(proc_id, n_gpus, args, devices,
                                             (g, num_of_ntype, num_classes, num_rels, target_idx,
                                             proc_train_seeds, val_idx, test_idx, labels)))
            p.start()
            procs.append(p)
        for p in procs:
            p.join()


def config():
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=str, default='0',
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--relabel", default=False, action='store_true',
            help="remove untouched nodes and relabel")
    parser.add_argument("--fanout", type=int, default=4,
            help="Fan-out of neighbor sampling.")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. ")
    parser.add_argument("--num-workers", type=int, default=0,
            help="Number of workers for dataloader.")
    parser.add_argument("--low-mem", default=False, action='store_true',
            help="Whether use low mem RelGraphCov")
    parser.add_argument("--mix-cpu-gpu", default=False, action='store_true',
            help="Whether store node embeddins in cpu")
    parser.add_argument("--sparse-embedding", action='store_true',
            help='Use sparse embedding for node embeddings.')
    parser.set_defaults(validation=True)
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = config()
    devices = list(map(int, args.gpu.split(',')))
    print(args)
    main(args, devices)