entity_classify_mp.py 24.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
import argparse
import itertools
import numpy as np
import time
13
import gc
14
15
16
17
18
19
20
21
22
23
24
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
from torch.multiprocessing import Queue
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
import dgl
from dgl import DGLGraph
from functools import partial

25
from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
26
27
28
from model import RelGraphEmbedLayer
from dgl.nn import RelGraphConv
from utils import thread_wrapped_func
29
30
31
import tqdm 

from ogb.nodeproppred import DglNodePropPredDataset
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

class EntityClassify(nn.Module):
    """ Entity classification class for RGCN
    Parameters
    ----------
    device : int
        Device to run the layer.
    num_nodes : int
        Number of nodes.
    h_dim : int
        Hidden dim size.
    out_dim : int
        Output dim size.
    num_rels : int
        Numer of relation types.
    num_bases : int
        Number of bases. If is none, use number of relations.
    num_hidden_layers : int
        Number of hidden RelGraphConv Layer
    dropout : float
        Dropout
    use_self_loop : bool
        Use self loop if True, default False.
    low_mem : bool
        True to use low memory implementation of relation message passing function
        trade speed with memory consumption
    """
    def __init__(self,
                 device,
                 num_nodes,
                 h_dim,
                 out_dim,
                 num_rels,
                 num_bases=None,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False,
69
70
                 low_mem=False,
                 layer_norm=False):
71
72
73
74
75
76
77
78
79
80
81
        super(EntityClassify, self).__init__()
        self.device = th.device(device if device >= 0 else 'cpu')
        self.num_nodes = num_nodes
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_rels = num_rels
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop
        self.low_mem = low_mem
82
        self.layer_norm = layer_norm
83
84
85
86
87
88

        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConv(
            self.h_dim, self.h_dim, self.num_rels, "basis",
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
89
            low_mem=self.low_mem, dropout=self.dropout, layer_norm = layer_norm))
90
91
92
93
94
        # h2h
        for idx in range(self.num_hidden_layers):
            self.layers.append(RelGraphConv(
                self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
95
                low_mem=self.low_mem, dropout=self.dropout, layer_norm = layer_norm))
96
97
98
99
100
        # h2o
        self.layers.append(RelGraphConv(
            self.h_dim, self.out_dim, self.num_rels, "basis",
            self.num_bases, activation=None,
            self_loop=self.use_self_loop,
101
            low_mem=self.low_mem, layer_norm = layer_norm))
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    def forward(self, blocks, feats, norm=None):
        if blocks is None:
            # full graph training
            blocks = [self.g] * len(self.layers)
        h = feats
        for layer, block in zip(self.layers, blocks):
            block = block.to(self.device)
            h = layer(block, h, block.edata['etype'], block.edata['norm'])
        return h

class NeighborSampler:
    """Neighbor sampler
    Parameters
    ----------
    g : DGLHeterograph
        Full graph
    target_idx : tensor
        The target training node IDs in g
    fanouts : list of int
        Fanout of each hop starting from the seed nodes. If a fanout is None,
        sample full neighbors.
    """
    def __init__(self, g, target_idx, fanouts):
        self.g = g
        self.target_idx = target_idx
        self.fanouts = fanouts

    """Do neighbor sample
    Parameters
    ----------
    seeds :
        Seed nodes
    Returns
    -------
    tensor
        Seed nodes, also known as target nodes
    blocks
        Sampled subgraphs
    """
    def sample_blocks(self, seeds):
        blocks = []
        etypes = []
        norms = []
        ntypes = []
        seeds = th.tensor(seeds).long()
        cur = self.target_idx[seeds]
        for fanout in self.fanouts:
            if fanout is None or fanout == -1:
                frontier = dgl.in_subgraph(self.g, cur)
            else:
                frontier = dgl.sampling.sample_neighbors(self.g, cur, fanout)
            etypes = self.g.edata[dgl.ETYPE][frontier.edata[dgl.EID]]
            block = dgl.to_block(frontier, cur)
            block.srcdata[dgl.NTYPE] = self.g.ndata[dgl.NTYPE][block.srcdata[dgl.NID]]
157
            block.srcdata['type_id'] = self.g.ndata[dgl.NID][block.srcdata[dgl.NID]]
158
159
160
161
162
            block.edata['etype'] = etypes
            cur = block.srcdata[dgl.NID]
            blocks.insert(0, block)
        return seeds, blocks

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def evaluate(model, embed_layer, eval_loader, node_feats):
    model.eval()
    embed_layer.eval()
    eval_logits = []
    eval_seeds = []
 
    with th.no_grad():
        for sample_data in tqdm.tqdm(eval_loader):
            th.cuda.empty_cache()
            seeds, blocks = sample_data
            feats = embed_layer(blocks[0].srcdata[dgl.NID],
                    blocks[0].srcdata[dgl.NTYPE],
                    blocks[0].srcdata['type_id'],
                    node_feats)
            logits = model(blocks, feats)
            eval_logits.append(logits.cpu().detach())
            eval_seeds.append(seeds.cpu().detach())
    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)
 
    return eval_logits, eval_seeds


186
@thread_wrapped_func
187
def run(proc_id, n_gpus, args, devices, dataset, split, queue=None):
188
    dev_id = devices[proc_id]
189
    g, node_feats, num_of_ntype, num_classes, num_rels, target_idx, \
190
        train_idx, val_idx, test_idx, labels = dataset
191
192
193
194
195
    if split is not None:
        train_seed, val_seed, test_seed = split
        train_idx = train_idx[train_seed]
        val_idx = val_idx[val_seed]
        test_idx = test_idx[test_seed]
196

197
    fanouts = [int(fanout) for fanout in args.fanout.split(',')]
198
    node_tids = g.ndata[dgl.NTYPE]
199
    sampler = NeighborSampler(g, target_idx, fanouts)
200
201
202
203
204
205
206
207
208
    loader = DataLoader(dataset=train_idx.numpy(),
                        batch_size=args.batch_size,
                        collate_fn=sampler.sample_blocks,
                        shuffle=True,
                        num_workers=args.num_workers)

    # validation sampler
    val_sampler = NeighborSampler(g, target_idx, [None] * args.n_layers)
    val_loader = DataLoader(dataset=val_idx.numpy(),
209
                            batch_size=args.eval_batch_size,
210
211
212
213
214
215
216
                            collate_fn=val_sampler.sample_blocks,
                            shuffle=False,
                            num_workers=args.num_workers)

    # validation sampler
    test_sampler = NeighborSampler(g, target_idx, [None] * args.n_layers)
    test_loader = DataLoader(dataset=test_idx.numpy(),
217
                             batch_size=args.eval_batch_size,
218
219
220
221
222
223
224
225
226
                             collate_fn=test_sampler.sample_blocks,
                             shuffle=False,
                             num_workers=args.num_workers)

    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        world_size = n_gpus
        backend = 'nccl'
227
228
229

        # using sparse embedding or usig mix_cpu_gpu model (embedding model can not be stored in GPU)
        if args.sparse_embedding or args.mix_cpu_gpu:
230
231
232
233
234
235
236
237
            backend = 'gloo'
        th.distributed.init_process_group(backend=backend,
                                          init_method=dist_init_method,
                                          world_size=world_size,
                                          rank=dev_id)

    # node features
    # None for one-hot feature, if not none, it should be the feature tensor.
238
    # 
239
240
241
242
243
244
245
246
247
    embed_layer = RelGraphEmbedLayer(dev_id,
                                     g.number_of_nodes(),
                                     node_tids,
                                     num_of_ntype,
                                     node_feats,
                                     args.n_hidden,
                                     sparse_emb=args.sparse_embedding)

    # create model
248
    # all model params are in device.
249
250
251
252
253
254
255
256
257
    model = EntityClassify(dev_id,
                           g.number_of_nodes(),
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop,
258
259
                           low_mem=args.low_mem,
                           layer_norm=args.layer_norm)
260

261
    if dev_id >= 0 and n_gpus == 1:
262
263
264
265
266
267
268
269
        th.cuda.set_device(dev_id)
        labels = labels.to(dev_id)
        model.cuda(dev_id)
        # embedding layer may not fit into GPU, then use mix_cpu_gpu
        if args.mix_cpu_gpu is False:
            embed_layer.cuda(dev_id)

    if n_gpus > 1:
270
271
272
273
274
275
276
        labels = labels.to(dev_id)
        model.cuda(dev_id)
        if args.mix_cpu_gpu:
            embed_layer = DistributedDataParallel(embed_layer, device_ids=None, output_device=None)
        else:
            embed_layer.cuda(dev_id)
            embed_layer = DistributedDataParallel(embed_layer, device_ids=[dev_id], output_device=dev_id)
277
278
279
280
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)

    # optimizer
    if args.sparse_embedding:
281
282
283
284
285
286
287
288
289
290
291
        dense_params = list(model.parameters())
        if args.node_feats:
            if  n_gpus > 1:
                dense_params += list(embed_layer.module.embeds.parameters())
            else:
                dense_params += list(embed_layer.embeds.parameters())
        optimizer = th.optim.Adam(dense_params, lr=args.lr, weight_decay=args.l2norm)
        if  n_gpus > 1:
            emb_optimizer = th.optim.SparseAdam(embed_layer.module.node_embeds.parameters(), lr=args.lr)
        else:
            emb_optimizer = th.optim.SparseAdam(embed_layer.node_embeds.parameters(), lr=args.lr)
292
    else:
293
        all_params = list(model.parameters()) + list(embed_layer.parameters())
294
295
296
297
298
299
300
301
302
        optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []

    for epoch in range(args.n_epochs):
        model.train()
303
        embed_layer.train()
304
305
306
307

        for i, sample_data in enumerate(loader):
            seeds, blocks = sample_data
            t0 = time.time()
308
309
310
            feats = embed_layer(blocks[0].srcdata[dgl.NID],
                                blocks[0].srcdata[dgl.NTYPE],
                                blocks[0].srcdata['type_id'],
311
312
313
314
                                node_feats)
            logits = model(blocks, feats)
            loss = F.cross_entropy(logits, labels[seeds])
            t1 = time.time()
315
316
317
318
            optimizer.zero_grad()
            if args.sparse_embedding:
                emb_optimizer.zero_grad()

319
320
321
322
323
324
325
326
327
            loss.backward()
            optimizer.step()
            if args.sparse_embedding:
                emb_optimizer.step()
            t2 = time.time()

            forward_time.append(t1 - t0)
            backward_time.append(t2 - t1)
            train_acc = th.sum(logits.argmax(dim=1) == labels[seeds]).item() / len(seeds)
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
            if i % 100 and proc_id == 0:
                print("Train Accuracy: {:.4f} | Train Loss: {:.4f}".
                    format(train_acc, loss.item()))
        print("Epoch {:05d}:{:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}".
            format(epoch, i, forward_time[-1], backward_time[-1]))

        if (queue is not None) or (proc_id == 0):
            val_logits, val_seeds = evaluate(model, embed_layer, val_loader, node_feats)
            if queue is not None:
                queue.put((val_logits, val_seeds))

            # gather evaluation result from multiple processes
            if proc_id == 0:
                if queue is not None:
                    val_logits = []
                    val_seeds = []
                    for i in range(n_gpus):
                        log = queue.get()
                        val_l, val_s = log
                        val_logits.append(val_l)
                        val_seeds.append(val_s)
                    val_logits = th.cat(val_logits)
                    val_seeds = th.cat(val_seeds)
                val_loss = F.cross_entropy(val_logits, labels[val_seeds].cpu()).item()
                val_acc = th.sum(val_logits.argmax(dim=1) == labels[val_seeds].cpu()).item() / len(val_seeds)

                print("Validation Accuracy: {:.4f} | Validation loss: {:.4f}".
                        format(val_acc, val_loss))
356
357
        if n_gpus > 1:
            th.distributed.barrier()
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

    # only process 0 will do the evaluation
    if (queue is not None) or (proc_id == 0):
        test_logits, test_seeds = evaluate(model, embed_layer, test_loader, node_feats)
        if queue is not None:
            queue.put((test_logits, test_seeds))

        # gather evaluation result from multiple processes
        if proc_id == 0:
            if queue is not None:
                test_logits = []
                test_seeds = []
                for i in range(n_gpus):
                    log = queue.get()
                    test_l, test_s = log
                    test_logits.append(test_l)
                    test_seeds.append(test_s)
                test_logits = th.cat(test_logits)
                test_seeds = th.cat(test_seeds)
            test_loss = F.cross_entropy(test_logits, labels[test_seeds].cpu()).item()
            test_acc = th.sum(test_logits.argmax(dim=1) == labels[test_seeds].cpu()).item() / len(test_seeds)
            print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss))
            print()

    # sync for test
    if n_gpus > 1:
        th.distributed.barrier()
385
386
387
388

    print("{}/{} Mean forward time: {:4f}".format(proc_id, n_gpus,
                                                  np.mean(forward_time[len(forward_time) // 4:])))
    print("{}/{} Mean backward time: {:4f}".format(proc_id, n_gpus,
389
                                                   np.mean(backward_time[len(backward_time) // 4:])))
390
391
392
393
394

def main(args, devices):
    # load graph data
    ogb_dataset = False
    if args.dataset == 'aifb':
395
        dataset = AIFBDataset()
396
    elif args.dataset == 'mutag':
397
        dataset = MUTAGDataset()
398
    elif args.dataset == 'bgs':
399
        dataset = BGSDataset()
400
    elif args.dataset == 'am':
401
        dataset = AMDataset()
402
403
404
    elif args.dataset == 'ogbn-mag':
        dataset = DglNodePropPredDataset(name=args.dataset)
        ogb_dataset = True
405
406
407
    else:
        raise ValueError()

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    if ogb_dataset is True:
        split_idx = dataset.get_idx_split()
        train_idx = split_idx["train"]['paper']
        val_idx = split_idx["valid"]['paper']
        test_idx = split_idx["test"]['paper']
        hg_orig, labels = dataset[0]
        subgs = {}
        for etype in hg_orig.canonical_etypes:
            u, v = hg_orig.all_edges(etype=etype)
            subgs[etype] = (u, v)
            subgs[(etype[2], 'rev-'+etype[1], etype[0])] = (v, u)
        hg = dgl.heterograph(subgs)
        hg.nodes['paper'].data['feat'] = hg_orig.nodes['paper'].data['feat']
        labels = labels['paper'].squeeze()

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        num_classes = dataset.num_classes
        if args.dataset == 'ogbn-mag':
            category = 'paper'
        print('Number of relations: {}'.format(num_rels))
        print('Number of class: {}'.format(num_classes))
        print('Number of train: {}'.format(len(train_idx)))
        print('Number of valid: {}'.format(len(val_idx)))
        print('Number of test: {}'.format(len(test_idx)))

        if args.node_feats:
            node_feats = []
            for ntype in hg.ntypes:
                if len(hg.nodes[ntype].data) == 0:
                    node_feats.append(None)
                else:
                    assert len(hg.nodes[ntype].data) == 1
                    feat = hg.nodes[ntype].data.pop('feat')
                    node_feats.append(feat.share_memory_())
        else:
            node_feats = [None] * num_of_ntype
445
    else:
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        # Load from hetero-graph
        hg = dataset[0]

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        category = dataset.predict_category
        num_classes = dataset.num_classes
        train_mask = hg.nodes[category].data.pop('train_mask')
        test_mask = hg.nodes[category].data.pop('test_mask')
        labels = hg.nodes[category].data.pop('labels')
        train_idx = th.nonzero(train_mask).squeeze()
        test_idx = th.nonzero(test_mask).squeeze()
        node_feats = [None] * num_of_ntype

        # AIFB, MUTAG, BGS and AM datasets do not provide validation set split.
        # Split train set into train and validation if args.validation is set
        # otherwise use train set as the validation set.
        if args.validation:
            val_idx = train_idx[:len(train_idx) // 5]
            train_idx = train_idx[len(train_idx) // 5:]
        else:
            val_idx = train_idx
468
469

    # calculate norm for each edge type and store in edge
470
471
472
473
474
475
476
477
    if args.global_norm is False:
        for canonical_etype in hg.canonical_etypes:
            u, v, eid = hg.all_edges(form='all', etype=canonical_etype)
            _, inverse_index, count = th.unique(v, return_inverse=True, return_counts=True)
            degrees = count[inverse_index]
            norm = th.ones(eid.shape[0]) / degrees
            norm = norm.unsqueeze(1)
            hg.edges[canonical_etype].data['norm'] = norm
478

479
480
481
482
483
484
    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i

485
    g = dgl.to_homogeneous(hg, edata=['norm'])
486
487
488
489
490
491
492
493
    if args.global_norm:
        u, v, eid = g.all_edges(form='all')
        _, inverse_index, count = th.unique(v, return_inverse=True, return_counts=True)
        degrees = count[inverse_index]
        norm = th.ones(eid.shape[0]) / degrees
        norm = norm.unsqueeze(1)
        g.edata['norm'] = norm

494
495
496
497
498
499
500
501
502
503
    g.ndata[dgl.NTYPE].share_memory_()
    g.edata[dgl.ETYPE].share_memory_()
    g.edata['norm'].share_memory_()
    node_ids = th.arange(g.number_of_nodes())

    # find out the target node ids
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]
    target_idx.share_memory_()
504
505
506
    train_idx.share_memory_()
    val_idx.share_memory_()
    test_idx.share_memory_()
507
508
509
    # Create csr/coo/csc formats before launching training processes with multi-gpu.
    # This avoids creating certain formats in each sub-process, which saves momory and CPU.
    g.create_formats_()
510
511
512
513

    n_gpus = len(devices)
    # cpu
    if devices[0] == -1:
514
        run(0, 0, args, ['cpu'],
515
516
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
             train_idx, val_idx, test_idx, labels), None, None)
517
518
519
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, args, devices,
520
521
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
            train_idx, val_idx, test_idx, labels), None, None)
522
523
    # multi gpu
    else:
524
        queue = mp.Queue(n_gpus)
525
526
        procs = []
        num_train_seeds = train_idx.shape[0]
527
528
529
530
531
        num_valid_seeds = val_idx.shape[0]
        num_test_seeds = test_idx.shape[0]
        train_seeds = th.randperm(num_train_seeds)
        valid_seeds = th.randperm(num_valid_seeds)
        test_seeds = th.randperm(num_test_seeds)
532
        tseeds_per_proc = num_train_seeds // n_gpus
533
534
        vseeds_per_proc = num_valid_seeds // n_gpus
        tstseeds_per_proc = num_test_seeds // n_gpus
535
        for proc_id in range(n_gpus):
536
537
538
539
540
541
542
543
544
545
546
547
548
549
            # we have multi-gpu for training, evaluation and testing
            # so split trian set, valid set and test set into num-of-gpu parts.
            proc_train_seeds = train_seeds[proc_id * tseeds_per_proc :
                                           (proc_id + 1) * tseeds_per_proc \
                                           if (proc_id + 1) * tseeds_per_proc < num_train_seeds \
                                           else num_train_seeds]
            proc_valid_seeds = valid_seeds[proc_id * vseeds_per_proc :
                                           (proc_id + 1) * vseeds_per_proc \
                                           if (proc_id + 1) * vseeds_per_proc < num_valid_seeds \
                                           else num_valid_seeds]
            proc_test_seeds = test_seeds[proc_id * tstseeds_per_proc :
                                         (proc_id + 1) * tstseeds_per_proc \
                                         if (proc_id + 1) * tstseeds_per_proc < num_test_seeds \
                                         else num_test_seeds]
550
            p = mp.Process(target=run, args=(proc_id, n_gpus, args, devices,
551
552
553
554
                                             (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
                                             train_idx, val_idx, test_idx, labels),
                                             (proc_train_seeds, proc_valid_seeds, proc_test_seeds),
                                             queue))
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
            p.start()
            procs.append(p)
        for p in procs:
            p.join()


def config():
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=str, default='0',
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--relabel", default=False, action='store_true',
            help="remove untouched nodes and relabel")
583
    parser.add_argument("--fanout", type=str, default="4, 4",
584
585
586
587
588
589
590
591
            help="Fan-out of neighbor sampling.")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. ")
592
593
    parser.add_argument("--eval-batch-size", type=int, default=128,
            help="Mini-batch size. ")
594
595
596
597
598
599
600
601
    parser.add_argument("--num-workers", type=int, default=0,
            help="Number of workers for dataloader.")
    parser.add_argument("--low-mem", default=False, action='store_true',
            help="Whether use low mem RelGraphCov")
    parser.add_argument("--mix-cpu-gpu", default=False, action='store_true',
            help="Whether store node embeddins in cpu")
    parser.add_argument("--sparse-embedding", action='store_true',
            help='Use sparse embedding for node embeddings.')
602
603
604
605
606
607
    parser.add_argument('--node-feats', default=False, action='store_true',
            help='Whether use node features')
    parser.add_argument('--global-norm', default=False, action='store_true',
            help='User global norm instead of per node type norm')
    parser.add_argument('--layer-norm', default=False, action='store_true',
            help='Use layer norm')
608
609
610
611
612
613
614
615
616
    parser.set_defaults(validation=True)
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = config()
    devices = list(map(int, args.gpu.split(',')))
    print(args)
    main(args, devices)