"torchvision/vscode:/vscode.git/clone" did not exist on "d4a126b6e9bbf7e86082eb8760e12e15c09831ac"
test_ondisk_dataset.py 57.3 KB
Newer Older
1
import os
2
3

import pickle
4
import re
5
import tempfile
6
import unittest
7

8
9
import gb_test_utils as gbt

10
import numpy as np
11
import pandas as pd
12
13
import pydantic
import pytest
14
import torch
15
import yaml
16
17
18
19
20
21
from dgl import graphbolt as gb


def test_OnDiskDataset_TVTSet_exceptions():
    """Test excpetions thrown when parsing TVTSet."""
    with tempfile.TemporaryDirectory() as test_dir:
22
23
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
24
25
26

        # Case 1: ``format`` is invalid.
        yaml_content = """
27
28
29
30
31
32
33
        tasks:
          - name: node_classification
            train_set:
              - type: paper
                data:
                  - format: torch_invalid
                    path: set/paper-train.pt
34
        """
35
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
36
37
38
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(pydantic.ValidationError):
39
            _ = gb.OnDiskDataset(test_dir).load()
40

41
42
        # Case 2: ``type`` is not specified while multiple TVT sets are
        # specified.
43
        yaml_content = """
44
45
46
47
48
49
50
51
52
53
54
            tasks:
              - name: node_classification
                train_set:
                - type: null
                  data:
                    - format: numpy
                      path: set/train.npy
                - type: null
                  data:
                    - format: numpy
                      path: set/train.npy
55
56
57
58
59
        """
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(
            AssertionError,
60
            match=r"Only one TVT set is allowed if type is not specified.",
61
        ):
62
            _ = gb.OnDiskDataset(test_dir).load()
63
64
65
66
67
68


def test_OnDiskDataset_TVTSet_ItemSet_id_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
69
70
        train_ids_path = os.path.join(test_dir, "train_ids.npy")
        np.save(train_ids_path, train_ids)
71
        train_labels = np.random.randint(0, 10, size=1000)
72
73
        train_labels_path = os.path.join(test_dir, "train_labels.npy")
        np.save(train_labels_path, train_labels)
74
75

        validation_ids = np.arange(1000, 2000)
76
77
        validation_ids_path = os.path.join(test_dir, "validation_ids.npy")
        np.save(validation_ids_path, validation_ids)
78
        validation_labels = np.random.randint(0, 10, size=1000)
79
80
        validation_labels_path = os.path.join(test_dir, "validation_labels.npy")
        np.save(validation_labels_path, validation_labels)
81
82

        test_ids = np.arange(2000, 3000)
83
84
        test_ids_path = os.path.join(test_dir, "test_ids.npy")
        np.save(test_ids_path, test_ids)
85
        test_labels = np.random.randint(0, 10, size=1000)
86
87
        test_labels_path = os.path.join(test_dir, "test_labels.npy")
        np.save(test_labels_path, test_labels)
88
89
90

        # Case 1:
        #   all TVT sets are specified.
91
        #   ``type`` is not specified or specified as ``null``.
92
93
        #   ``in_memory`` could be ``true`` and ``false``.
        yaml_content = f"""
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
            tasks:
              - name: node_classification
                num_classes: 10
                train_set:
                  - type: null
                    data:
                      - format: numpy
                        in_memory: true
                        path: {train_ids_path}
                      - format: numpy
                        in_memory: true
                        path: {train_labels_path}
                validation_set:
                  - data:
                      - format: numpy
                        in_memory: true
                        path: {validation_ids_path}
                      - format: numpy
                        in_memory: true
                        path: {validation_labels_path}
                test_set:
                  - type: null
                    data:
                      - format: numpy
                        in_memory: true
                        path: {test_ids_path}
                      - format: numpy
                        in_memory: true
                        path: {test_labels_path}
123
        """
124
125
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
126
127
128
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

129
        dataset = gb.OnDiskDataset(test_dir).load()
130

131
132
133
134
135
        # Verify tasks.
        assert len(dataset.tasks) == 1
        assert dataset.tasks[0].metadata["name"] == "node_classification"
        assert dataset.tasks[0].metadata["num_classes"] == 10

136
        # Verify train set.
137
        train_set = dataset.tasks[0].train_set
138
139
140
141
142
143
        assert len(train_set) == 1000
        assert isinstance(train_set, gb.ItemSet)
        for i, (id, label) in enumerate(train_set):
            assert id == train_ids[i]
            assert label == train_labels[i]
        train_set = None
144
145

        # Verify validation set.
146
        validation_set = dataset.tasks[0].validation_set
147
148
149
150
151
152
        assert len(validation_set) == 1000
        assert isinstance(validation_set, gb.ItemSet)
        for i, (id, label) in enumerate(validation_set):
            assert id == validation_ids[i]
            assert label == validation_labels[i]
        validation_set = None
153
154

        # Verify test set.
155
        test_set = dataset.tasks[0].test_set
156
157
158
159
160
161
        assert len(test_set) == 1000
        assert isinstance(test_set, gb.ItemSet)
        for i, (id, label) in enumerate(test_set):
            assert id == test_ids[i]
            assert label == test_labels[i]
        test_set = None
162
163
164
165
        dataset = None

        # Case 2: Some TVT sets are None.
        yaml_content = f"""
166
167
168
169
170
171
172
            tasks:
              - name: node_classification
                train_set:
                  - type: null
                    data:
                      - format: numpy
                        path: {train_ids_path}
173
        """
174
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
175
176
177
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

178
        dataset = gb.OnDiskDataset(test_dir).load()
179
180
181
        assert dataset.tasks[0].train_set is not None
        assert dataset.tasks[0].validation_set is None
        assert dataset.tasks[0].test_set is None
182
183
184
185
186
187
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSet_node_pair_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
188
189
190
191
192
193
        train_src = np.arange(1000)
        train_src_path = os.path.join(test_dir, "train_src.npy")
        np.save(train_src_path, train_src)
        train_dst = np.arange(1000, 2000)
        train_dst_path = os.path.join(test_dir, "train_dst.npy")
        np.save(train_dst_path, train_dst)
194
        train_labels = np.random.randint(0, 10, size=1000)
195
196
197
198
199
200
201
202
203
        train_labels_path = os.path.join(test_dir, "train_labels.npy")
        np.save(train_labels_path, train_labels)

        validation_src = np.arange(1000, 2000)
        validation_src_path = os.path.join(test_dir, "validation_src.npy")
        np.save(validation_src_path, validation_src)
        validation_dst = np.arange(2000, 3000)
        validation_dst_path = os.path.join(test_dir, "validation_dst.npy")
        np.save(validation_dst_path, validation_dst)
204
        validation_labels = np.random.randint(0, 10, size=1000)
205
206
207
208
209
210
211
212
213
        validation_labels_path = os.path.join(test_dir, "validation_labels.npy")
        np.save(validation_labels_path, validation_labels)

        test_src = np.arange(2000, 3000)
        test_src_path = os.path.join(test_dir, "test_src.npy")
        np.save(test_src_path, test_src)
        test_dst = np.arange(3000, 4000)
        test_dst_path = os.path.join(test_dir, "test_dst.npy")
        np.save(test_dst_path, test_dst)
214
        test_labels = np.random.randint(0, 10, size=1000)
215
216
        test_labels_path = os.path.join(test_dir, "test_labels.npy")
        np.save(test_labels_path, test_labels)
217
218

        yaml_content = f"""
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
            tasks:
              - name: link_prediction
                train_set:
                  - type: null
                    data:
                      - format: numpy
                        in_memory: true
                        path: {train_src_path}
                      - format: numpy
                        in_memory: true
                        path: {train_dst_path}
                      - format: numpy
                        in_memory: true
                        path: {train_labels_path}
                validation_set:
                  - data:
                      - format: numpy
                        in_memory: true
                        path: {validation_src_path}
                      - format: numpy
                        in_memory: true
                        path: {validation_dst_path}
                      - format: numpy
                        in_memory: true
                        path: {validation_labels_path}
                test_set:
                  - type: null
                    data:
                      - format: numpy
                        in_memory: true
                        path: {test_src_path}
                      - format: numpy
                        in_memory: true
                        path: {test_dst_path}
                      - format: numpy
                        in_memory: true
                        path: {test_labels_path}
256
        """
257
258
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
259
260
261
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

262
        dataset = gb.OnDiskDataset(test_dir).load()
263
264

        # Verify train set.
265
        train_set = dataset.tasks[0].train_set
266
267
268
269
270
271
272
        assert len(train_set) == 1000
        assert isinstance(train_set, gb.ItemSet)
        for i, (src, dst, label) in enumerate(train_set):
            assert src == train_src[i]
            assert dst == train_dst[i]
            assert label == train_labels[i]
        train_set = None
273
274

        # Verify validation set.
275
        validation_set = dataset.tasks[0].validation_set
276
277
278
279
280
281
282
        assert len(validation_set) == 1000
        assert isinstance(validation_set, gb.ItemSet)
        for i, (src, dst, label) in enumerate(validation_set):
            assert src == validation_src[i]
            assert dst == validation_dst[i]
            assert label == validation_labels[i]
        validation_set = None
283
284

        # Verify test set.
285
        test_set = dataset.tasks[0].test_set
286
287
288
289
290
291
292
        assert len(test_set) == 1000
        assert isinstance(test_set, gb.ItemSet)
        for i, (src, dst, label) in enumerate(test_set):
            assert src == test_src[i]
            assert dst == test_dst[i]
            assert label == test_labels[i]
        test_set = None
293
294
295
        dataset = None


296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
def test_OnDiskDataset_TVTSet_ItemSet_node_pair_negs():
    """Test TVTSet which returns ItemSet with node pairs and negative ones."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_src = np.arange(1000)
        train_src_path = os.path.join(test_dir, "train_src.npy")
        np.save(train_src_path, train_src)
        train_dst = np.arange(1000, 2000)
        train_dst_path = os.path.join(test_dir, "train_dst.npy")
        np.save(train_dst_path, train_dst)
        train_neg_dst = np.random.choice(1000 * 10, size=1000 * 10).reshape(
            1000, 10
        )
        train_neg_dst_path = os.path.join(test_dir, "train_neg_dst.npy")
        np.save(train_neg_dst_path, train_neg_dst)

        validation_src = np.arange(1000, 2000)
        validation_src_path = os.path.join(test_dir, "validation_src.npy")
        np.save(validation_src_path, validation_src)
        validation_dst = np.arange(2000, 3000)
        validation_dst_path = os.path.join(test_dir, "validation_dst.npy")
        np.save(validation_dst_path, validation_dst)
        validation_neg_dst = train_neg_dst + 1
        validation_neg_dst_path = os.path.join(
            test_dir, "validation_neg_dst.npy"
        )
        np.save(validation_neg_dst_path, validation_neg_dst)

        test_src = np.arange(2000, 3000)
        test_src_path = os.path.join(test_dir, "test_src.npy")
        np.save(test_src_path, test_src)
        test_dst = np.arange(3000, 4000)
        test_dst_path = os.path.join(test_dir, "test_dst.npy")
        np.save(test_dst_path, test_dst)
        test_neg_dst = train_neg_dst + 2
        test_neg_dst_path = os.path.join(test_dir, "test_neg_dst.npy")
        np.save(test_neg_dst_path, test_neg_dst)

        yaml_content = f"""
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
            tasks:
              - name: link_prediction
                train_set:
                  - type: null
                    data:
                      - format: numpy
                        in_memory: true
                        path: {train_src_path}
                      - format: numpy
                        in_memory: true
                        path: {train_dst_path}
                      - format: numpy
                        in_memory: true
                        path: {train_neg_dst_path}
                validation_set:
                  - data:
                      - format: numpy
                        in_memory: true
                        path: {validation_src_path}
                      - format: numpy
                        in_memory: true
                        path: {validation_dst_path}
                      - format: numpy
                        in_memory: true
                        path: {validation_neg_dst_path}
                test_set:
                  - type: null
                    data:
                      - format: numpy
                        in_memory: true
                        path: {test_src_path}
                      - format: numpy
                        in_memory: true
                        path: {test_dst_path}
                      - format: numpy
                        in_memory: true
                        path: {test_neg_dst_path}
371
        """
372
373
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
374
375
376
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

377
        dataset = gb.OnDiskDataset(test_dir).load()
378
379

        # Verify train set.
380
        train_set = dataset.tasks[0].train_set
381
382
383
384
385
386
387
        assert len(train_set) == 1000
        assert isinstance(train_set, gb.ItemSet)
        for i, (src, dst, negs) in enumerate(train_set):
            assert src == train_src[i]
            assert dst == train_dst[i]
            assert torch.equal(negs, torch.from_numpy(train_neg_dst[i]))
        train_set = None
388
389

        # Verify validation set.
390
        validation_set = dataset.tasks[0].validation_set
391
392
393
394
395
396
397
        assert len(validation_set) == 1000
        assert isinstance(validation_set, gb.ItemSet)
        for i, (src, dst, negs) in enumerate(validation_set):
            assert src == validation_src[i]
            assert dst == validation_dst[i]
            assert torch.equal(negs, torch.from_numpy(validation_neg_dst[i]))
        validation_set = None
398
399

        # Verify test set.
400
        test_set = dataset.tasks[0].test_set
401
402
403
404
405
406
407
        assert len(test_set) == 1000
        assert isinstance(test_set, gb.ItemSet)
        for i, (src, dst, negs) in enumerate(test_set):
            assert src == test_src[i]
            assert dst == test_dst[i]
            assert torch.equal(negs, torch.from_numpy(test_neg_dst[i]))
        test_set = None
408
409
410
        dataset = None


411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def test_OnDiskDataset_TVTSet_ItemSetDict_id_label():
    """Test TVTSet which returns ItemSetDict with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_ids, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_ids = np.arange(1000, 2000)
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_ids, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_ids = np.arange(2000, 3000)
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_ids, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
            tasks:
              - name: node_classification
                train_set:
                  - type: paper
                    data:
                      - format: numpy
                        in_memory: true
                        path: {train_path}
                  - type: author
                    data:
                      - format: numpy
                        path: {train_path}
                validation_set:
                  - type: paper
                    data:
                      - format: numpy
                        path: {validation_path}
                  - type: author
                    data:
                      - format: numpy
                        path: {validation_path}
                test_set:
                  - type: paper
                    data:
                      - format: numpy
                        in_memory: false
                        path: {test_path}
                  - type: author
                    data:
                      - format: numpy
                        path: {test_path}
464
        """
465
466
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
467
468
469
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

470
        dataset = gb.OnDiskDataset(test_dir).load()
471
472

        # Verify train set.
473
        train_set = dataset.tasks[0].train_set
474
475
476
477
478
479
480
481
482
483
484
        assert len(train_set) == 2000
        assert isinstance(train_set, gb.ItemSetDict)
        for i, item in enumerate(train_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            id, label = item[key]
            assert id == train_ids[i % 1000]
            assert label == train_labels[i % 1000]
        train_set = None
485
486

        # Verify validation set.
487
        validation_set = dataset.tasks[0].validation_set
488
489
490
491
492
493
494
495
496
497
498
        assert len(validation_set) == 2000
        assert isinstance(validation_set, gb.ItemSetDict)
        for i, item in enumerate(validation_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            id, label = item[key]
            assert id == validation_ids[i % 1000]
            assert label == validation_labels[i % 1000]
        validation_set = None
499
500

        # Verify test set.
501
        test_set = dataset.tasks[0].test_set
502
503
504
505
506
507
508
509
510
511
512
        assert len(test_set) == 2000
        assert isinstance(test_set, gb.ItemSetDict)
        for i, item in enumerate(test_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            id, label = item[key]
            assert id == test_ids[i % 1000]
            assert label == test_labels[i % 1000]
        test_set = None
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSetDict_node_pair_label():
    """Test TVTSet which returns ItemSetDict with node pairs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
            tasks:
              - name: edge_classification
                train_set:
                  - type: paper
                    data:
                      - format: numpy
                        in_memory: true
                        path: {train_path}
                  - type: author
                    data:
                      - format: numpy
                        path: {train_path}
                validation_set:
                  - type: paper
                    data:
                      - format: numpy
                        path: {validation_path}
                  - type: author
                    data:
                      - format: numpy
                        path: {validation_path}
                test_set:
                  - type: paper
                    data:
                      - format: numpy
                        in_memory: false
                        path: {test_path}
                  - type: author
                    data:
                      - format: numpy
                        path: {test_path}
569
        """
570
571
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
572
573
574
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

575
        dataset = gb.OnDiskDataset(test_dir).load()
576
577

        # Verify train set.
578
        train_set = dataset.tasks[0].train_set
579
580
581
582
583
584
585
586
587
588
589
590
        assert len(train_set) == 2000
        assert isinstance(train_set, gb.ItemSetDict)
        for i, item in enumerate(train_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            src, dst, label = item[key]
            assert src == train_pairs[0][i % 1000]
            assert dst == train_pairs[1][i % 1000]
            assert label == train_labels[i % 1000]
        train_set = None
591
592

        # Verify validation set.
593
        validation_set = dataset.tasks[0].validation_set
594
595
596
597
598
599
600
601
602
603
604
605
        assert len(validation_set) == 2000
        assert isinstance(validation_set, gb.ItemSetDict)
        for i, item in enumerate(validation_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            src, dst, label = item[key]
            assert src == validation_pairs[0][i % 1000]
            assert dst == validation_pairs[1][i % 1000]
            assert label == validation_labels[i % 1000]
        validation_set = None
606
607

        # Verify test set.
608
        test_set = dataset.tasks[0].test_set
609
610
611
612
613
614
615
616
617
618
619
620
        assert len(test_set) == 2000
        assert isinstance(test_set, gb.ItemSetDict)
        for i, item in enumerate(test_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            src, dst, label = item[key]
            assert src == test_pairs[0][i % 1000]
            assert dst == test_pairs[1][i % 1000]
            assert label == test_labels[i % 1000]
        test_set = None
621
        dataset = None
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670


def test_OnDiskDataset_Feature_heterograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_paper = np.random.rand(1000, 10)
        node_data_paper_path = os.path.join(test_dir, "node_data_paper.npy")
        np.save(node_data_paper_path, node_data_paper)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_writes = np.random.rand(1000, 10)
        edge_data_writes_path = os.path.join(test_dir, "edge_writes_paper.npy")
        np.save(edge_data_writes_path, edge_data_writes)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                type: paper
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_paper_path}
              - domain: node
                type: paper
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                type: "author:writes:paper"
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_writes_path}
              - domain: edge
                type: "author:writes:paper"
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
671
672
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
673
674
675
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

676
        dataset = gb.OnDiskDataset(test_dir).load()
677
678

        # Verify feature data storage.
679
        feature_data = dataset.feature
680
681
682
683
        assert len(feature_data) == 4

        # Verify node feature data.
        assert torch.equal(
684
685
            feature_data.read("node", "paper", "feat"),
            torch.tensor(node_data_paper),
686
687
        )
        assert torch.equal(
688
689
            feature_data.read("node", "paper", "label"),
            torch.tensor(node_data_label),
690
691
692
693
        )

        # Verify edge feature data.
        assert torch.equal(
694
695
            feature_data.read("edge", "author:writes:paper", "feat"),
            torch.tensor(edge_data_writes),
696
697
        )
        assert torch.equal(
698
699
            feature_data.read("edge", "author:writes:paper", "label"),
            torch.tensor(edge_data_label),
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
        )

        feature_data = None
        dataset = None


def test_OnDiskDataset_Feature_homograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_feat = np.random.rand(1000, 10)
        node_data_feat_path = os.path.join(test_dir, "node_data_feat.npy")
        np.save(node_data_feat_path, node_data_feat)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_feat = np.random.rand(1000, 10)
        edge_data_feat_path = os.path.join(test_dir, "edge_data_feat.npy")
        np.save(edge_data_feat_path, edge_data_feat)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        # ``type`` is not specified in the YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_feat_path}
              - domain: node
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_feat_path}
              - domain: edge
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
750
751
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
752
753
754
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

755
        dataset = gb.OnDiskDataset(test_dir).load()
756
757

        # Verify feature data storage.
758
        feature_data = dataset.feature
759
760
761
        assert len(feature_data) == 4

        # Verify node feature data.
762
763
764
765
766
767
768
769
        assert torch.equal(
            feature_data.read("node", None, "feat"),
            torch.tensor(node_data_feat),
        )
        assert torch.equal(
            feature_data.read("node", None, "label"),
            torch.tensor(node_data_label),
        )
770
771

        # Verify edge feature data.
772
773
774
775
776
777
778
779
780
        assert torch.equal(
            feature_data.read("edge", None, "feat"),
            torch.tensor(edge_data_feat),
        )
        assert torch.equal(
            feature_data.read("edge", None, "label"),
            torch.tensor(edge_data_label),
        )

781
782
        feature_data = None
        dataset = None
783
784
785
786
787
788
789
790
791
792
793


def test_OnDiskDataset_Graph_Exceptions():
    """Test exceptions in parsing graph topology."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Invalid graph type.
        yaml_content = """
            graph_topology:
              type: CSRSamplingGraph
              path: /path/to/graph
        """
794
795
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
796
797
798
799
800
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        with pytest.raises(
            pydantic.ValidationError,
801
            match="1 validation error for OnDiskMetaData",
802
        ):
803
            _ = gb.OnDiskDataset(test_dir).load()
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819


def test_OnDiskDataset_Graph_homogeneous():
    """Test homogeneous graph topology."""
    csc_indptr, indices = gbt.random_homo_graph(1000, 10 * 1000)
    graph = gb.from_csc(csc_indptr, indices)

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
820
821
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
822
823
824
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

825
        dataset = gb.OnDiskDataset(test_dir).load()
826
        graph2 = dataset.graph
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)

        assert graph.metadata is None and graph2.metadata is None
        assert (
            graph.node_type_offset is None and graph2.node_type_offset is None
        )
        assert graph.type_per_edge is None and graph2.type_per_edge is None


def test_OnDiskDataset_Graph_heterogeneous():
    """Test heterogeneous graph topology."""
    (
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
        metadata,
    ) = gbt.random_hetero_graph(1000, 10 * 1000, 3, 4)
    graph = gb.from_csc(
851
        csc_indptr, indices, node_type_offset, type_per_edge, None, metadata
852
853
854
855
856
857
858
859
860
861
862
    )

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
863
864
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
865
866
867
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

868
        dataset = gb.OnDiskDataset(test_dir).load()
869
        graph2 = dataset.graph
870
871
872
873
874
875
876
877
878
879

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)
        assert torch.equal(graph.node_type_offset, graph2.node_type_offset)
        assert torch.equal(graph.type_per_edge, graph2.type_per_edge)
        assert graph.metadata.node_type_to_id == graph2.metadata.node_type_to_id
        assert graph.metadata.edge_type_to_id == graph2.metadata.edge_type_to_id
880
881
882
883
884
885
886
887
888
889


def test_OnDiskDataset_Metadata():
    """Test metadata of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        yaml_content = f"""
            dataset_name: {dataset_name}
        """
890
891
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
892
893
894
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

895
        dataset = gb.OnDiskDataset(test_dir).load()
896
897
898
899
900
901
        assert dataset.dataset_name == dataset_name

        # Only dataset_name is specified.
        yaml_content = f"""
            dataset_name: {dataset_name}
        """
902
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
903
904
905
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

906
        dataset = gb.OnDiskDataset(test_dir).load()
907
        assert dataset.dataset_name == dataset_name
908
909
910
911
912
913
914
915
916
917
918


def test_OnDiskDataset_preprocess_homogeneous():
    """Test preprocess of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10

919
920
921
922
923
924
925
        # Generate random graph.
        yaml_content = gbt.random_homo_graphbolt_graph(
            test_dir,
            dataset_name,
            num_nodes,
            num_edges,
            num_classes,
926
        )
927
        yaml_file = os.path.join(test_dir, "metadata.yaml")
928
929
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
930
        output_file = gb.ondisk_dataset.preprocess_ondisk_dataset(test_dir)
931
932

        with open(output_file, "rb") as f:
933
            processed_dataset = yaml.load(f, Loader=yaml.Loader)
934
935

        assert processed_dataset["dataset_name"] == dataset_name
936
        assert processed_dataset["tasks"][0]["num_classes"] == num_classes
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
        assert "graph" not in processed_dataset
        assert "graph_topology" in processed_dataset

        csc_sampling_graph = gb.csc_sampling_graph.load_csc_sampling_graph(
            os.path.join(test_dir, processed_dataset["graph_topology"]["path"])
        )
        assert csc_sampling_graph.num_nodes == num_nodes
        assert csc_sampling_graph.num_edges == num_edges

        num_samples = 100
        fanout = 1
        subgraph = csc_sampling_graph.sample_neighbors(
            torch.arange(num_samples),
            torch.tensor([fanout]),
        )
        assert len(list(subgraph.node_pairs.values())[0][0]) <= num_samples
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991


def test_OnDiskDataset_preprocess_path():
    """Test if the preprocess function can catch the path error."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"

        yaml_content = f"""
            dataset_name: {dataset_name}
        """
        yaml_file = os.path.join(test_dir, "metadata.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        # Case1. Test the passed in is the yaml file path.
        with pytest.raises(
            RuntimeError,
            match="The dataset must be a directory. "
            rf"But got {re.escape(yaml_file)}",
        ):
            _ = gb.OnDiskDataset(yaml_file)

        # Case2. Test the passed in is a fake directory.
        fake_dir = os.path.join(test_dir, "fake_dir")
        with pytest.raises(
            RuntimeError,
            match=rf"Invalid dataset path: {re.escape(fake_dir)}",
        ):
            _ = gb.OnDiskDataset(fake_dir)

        # Case3. Test the passed in is the dataset directory.
        # But the metadata.yaml is not in the directory.
        os.makedirs(os.path.join(test_dir, "fake_dir"), exist_ok=True)
        with pytest.raises(
            RuntimeError,
            match=r"metadata.yaml does not exist.",
        ):
            _ = gb.OnDiskDataset(fake_dir)
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299


@unittest.skipIf(os.name == "nt", "Skip on Windows")
def test_OnDiskDataset_preprocess_yaml_content_unix():
    """Test if the preprocessed metadata.yaml is correct."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10

        # Generate random edges.
        nodes = np.repeat(np.arange(num_nodes), 5)
        neighbors = np.random.randint(0, num_nodes, size=(num_edges))
        edges = np.stack([nodes, neighbors], axis=1)
        # Wrtie into edges/edge.csv
        os.makedirs(os.path.join(test_dir, "edges/"), exist_ok=True)
        edges = pd.DataFrame(edges, columns=["src", "dst"])
        edges.to_csv(
            os.path.join(test_dir, "edges/edge.csv"),
            index=False,
            header=False,
        )

        # Generate random graph edge-feats.
        edge_feats = np.random.rand(num_edges, 5)
        os.makedirs(os.path.join(test_dir, "data/"), exist_ok=True)
        np.save(os.path.join(test_dir, "data/edge-feat.npy"), edge_feats)

        # Generate random node-feats.
        node_feats = np.random.rand(num_nodes, 10)
        np.save(os.path.join(test_dir, "data/node-feat.npy"), node_feats)

        # Generate train/test/valid set.
        os.makedirs(os.path.join(test_dir, "set/"), exist_ok=True)
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "set/train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "set/validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "set/test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            dataset_name: {dataset_name}
            graph: # graph structure and required attributes.
                nodes:
                    - num: {num_nodes}
                edges:
                    - format: csv
                      path: edges/edge.csv
                feature_data:
                    - domain: edge
                      type: null
                      name: feat
                      format: numpy
                      in_memory: true
                      path: data/edge-feat.npy
            feature_data:
                - domain: node
                  type: null
                  name: feat
                  format: numpy
                  in_memory: false
                  path: data/node-feat.npy
            tasks:
              - name: node_classification
                num_classes: {num_classes}
                train_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: set/train.npy
                validation_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: set/validation.npy
                test_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: set/test.npy
        """
        yaml_file = os.path.join(test_dir, "metadata.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        preprocessed_metadata_path = gb.preprocess_ondisk_dataset(test_dir)
        with open(preprocessed_metadata_path, "r") as f:
            yaml_data = yaml.safe_load(f)

        target_yaml_content = f"""
            dataset_name: {dataset_name}
            graph_topology:
              type: CSCSamplingGraph
              path: preprocessed/csc_sampling_graph.tar
            feature_data:
              - domain: node
                type: null
                name: feat
                format: numpy
                in_memory: false
                path: preprocessed/data/node-feat.npy
            tasks:
              - name: node_classification
                num_classes: {num_classes}
                train_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: preprocessed/set/train.npy
                validation_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: preprocessed/set/validation.npy
                test_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: preprocessed/set/test.npy
        """
        target_yaml_data = yaml.safe_load(target_yaml_content)
        # Check yaml content.
        assert (
            yaml_data == target_yaml_data
        ), "The preprocessed metadata.yaml is not correct."

        # Check file existence.
        assert os.path.exists(
            os.path.join(test_dir, yaml_data["graph_topology"]["path"])
        )
        assert os.path.exists(
            os.path.join(test_dir, yaml_data["feature_data"][0]["path"])
        )
        for set_name in ["train_set", "validation_set", "test_set"]:
            assert os.path.exists(
                os.path.join(
                    test_dir,
                    yaml_data["tasks"][0][set_name][0]["data"][0]["path"],
                )
            )


@unittest.skipIf(os.name != "nt", "Skip on Unix")
def test_OnDiskDataset_preprocess_yaml_content_windows():
    """Test if the preprocessed metadata.yaml is correct."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10

        # Generate random edges.
        nodes = np.repeat(np.arange(num_nodes), 5)
        neighbors = np.random.randint(0, num_nodes, size=(num_edges))
        edges = np.stack([nodes, neighbors], axis=1)
        # Wrtie into edges/edge.csv
        os.makedirs(os.path.join(test_dir, "edges\\"), exist_ok=True)
        edges = pd.DataFrame(edges, columns=["src", "dst"])
        edges.to_csv(
            os.path.join(test_dir, "edges\\edge.csv"),
            index=False,
            header=False,
        )

        # Generate random graph edge-feats.
        edge_feats = np.random.rand(num_edges, 5)
        os.makedirs(os.path.join(test_dir, "data\\"), exist_ok=True)
        np.save(os.path.join(test_dir, "data\\edge-feat.npy"), edge_feats)

        # Generate random node-feats.
        node_feats = np.random.rand(num_nodes, 10)
        np.save(os.path.join(test_dir, "data\\node-feat.npy"), node_feats)

        # Generate train/test/valid set.
        os.makedirs(os.path.join(test_dir, "set\\"), exist_ok=True)
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "set\\train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "set\\validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "set\\test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            dataset_name: {dataset_name}
            graph: # graph structure and required attributes.
                nodes:
                    - num: {num_nodes}
                edges:
                    - format: csv
                      path: edges\\edge.csv
                feature_data:
                    - domain: edge
                      type: null
                      name: feat
                      format: numpy
                      in_memory: true
                      path: data\\edge-feat.npy
            feature_data:
                - domain: node
                  type: null
                  name: feat
                  format: numpy
                  in_memory: false
                  path: data\\node-feat.npy
            tasks:
              - name: node_classification
                num_classes: {num_classes}
                train_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: set\\train.npy
                validation_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: set\\validation.npy
                test_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: set\\test.npy
        """
        yaml_file = os.path.join(test_dir, "metadata.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        preprocessed_metadata_path = gb.preprocess_ondisk_dataset(test_dir)
        with open(preprocessed_metadata_path, "r") as f:
            yaml_data = yaml.safe_load(f)

        target_yaml_content = f"""
            dataset_name: {dataset_name}
            graph_topology:
              type: CSCSamplingGraph
              path: preprocessed\\csc_sampling_graph.tar
            feature_data:
              - domain: node
                type: null
                name: feat
                format: numpy
                in_memory: false
                path: preprocessed\\data\\node-feat.npy
            tasks:
              - name: node_classification
                num_classes: {num_classes}
                train_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: preprocessed\\set\\train.npy
                validation_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: preprocessed\\set\\validation.npy
                test_set:
                  - type_name: null
                    data:
                      - format: numpy
                        path: preprocessed\\set\\test.npy
        """
        target_yaml_data = yaml.safe_load(target_yaml_content)
        # Check yaml content.
        assert (
            yaml_data == target_yaml_data
        ), "The preprocessed metadata.yaml is not correct."

        # Check file existence.
        assert os.path.exists(
            os.path.join(test_dir, yaml_data["graph_topology"]["path"])
        )
        assert os.path.exists(
            os.path.join(test_dir, yaml_data["feature_data"][0]["path"])
        )
        for set_name in ["train_set", "validation_set", "test_set"]:
            assert os.path.exists(
                os.path.join(
                    test_dir,
                    yaml_data["tasks"][0][set_name][0]["data"][0]["path"],
                )
            )
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560


def test_OnDiskDataset_load_name():
    """Test preprocess of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10

        # Generate random graph.
        yaml_content = gbt.random_homo_graphbolt_graph(
            test_dir,
            dataset_name,
            num_nodes,
            num_edges,
            num_classes,
        )
        yaml_file = os.path.join(test_dir, "metadata.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        # Check modify `dataset_name` field.
        dataset = gb.OnDiskDataset(test_dir)
        dataset.yaml_data["dataset_name"] = "fake_name"
        dataset.load()
        assert dataset.dataset_name == "fake_name"
        dataset = None


def test_OnDiskDataset_load_feature():
    """Test preprocess of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10

        # Generate random graph.
        yaml_content = gbt.random_homo_graphbolt_graph(
            test_dir,
            dataset_name,
            num_nodes,
            num_edges,
            num_classes,
        )
        yaml_file = os.path.join(test_dir, "metadata.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        # Case1. Test modify the `in_memory` field.
        dataset = gb.OnDiskDataset(test_dir).load()
        original_feature_data = dataset.feature
        dataset.yaml_data["feature_data"][0]["in_memory"] = True
        dataset.load()
        modify_feature_data = dataset.feature
        # After modify the `in_memory` field, the feature data should be
        # equal.
        assert torch.equal(
            original_feature_data.read("node", None, "feat"),
            modify_feature_data.read("node", None, "feat"),
        )

        # Case2. Test modify the `format` field.
        dataset = gb.OnDiskDataset(test_dir)
        # If `format` is torch and `in_memory` is False, it will
        # raise an AssertionError.
        dataset.yaml_data["feature_data"][0]["format"] = "torch"
        with pytest.raises(
            AssertionError,
            match="^Pytorch tensor can only be loaded in memory,",
        ):
            dataset.load()

        dataset = gb.OnDiskDataset(test_dir)
        dataset.yaml_data["feature_data"][0]["in_memory"] = True
        dataset.yaml_data["feature_data"][0]["format"] = "torch"
        # If `format` is torch and `in_memory` is True, it will
        # raise an UnpicklingError.
        with pytest.raises(pickle.UnpicklingError):
            dataset.load()

        # Case3. Test modify the `path` field.
        dataset = gb.OnDiskDataset(test_dir)
        # Use invalid path will raise an FileNotFoundError.
        dataset.yaml_data["feature_data"][0]["path"] = "fake_path"
        with pytest.raises(
            FileNotFoundError,
            match=r"\[Errno 2\] No such file or directory:",
        ):
            dataset.load()
        # Modifying the `path` field to an absolute path should work.
        # In os.path.join, if a segment is an absolute path (which
        # on Windows requires both a drive and a root), then all
        # previous segments are ignored and joining continues from
        # the absolute path segment.
        dataset = gb.OnDiskDataset(test_dir).load()
        original_feature_data = dataset.feature
        dataset.yaml_data["feature_data"][0]["path"] = os.path.join(
            test_dir, dataset.yaml_data["feature_data"][0]["path"]
        )
        dataset.load()
        modify_feature_data = dataset.feature
        assert torch.equal(
            original_feature_data.read("node", None, "feat"),
            modify_feature_data.read("node", None, "feat"),
        )
        original_feature_data = None
        modify_feature_data = None
        dataset = None


def test_OnDiskDataset_load_graph():
    """Test preprocess of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10

        # Generate random graph.
        yaml_content = gbt.random_homo_graphbolt_graph(
            test_dir,
            dataset_name,
            num_nodes,
            num_edges,
            num_classes,
        )
        yaml_file = os.path.join(test_dir, "metadata.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        # Case1. Test modify the `type` field.
        dataset = gb.OnDiskDataset(test_dir)
        dataset.yaml_data["graph_topology"]["type"] = "fake_type"
        with pytest.raises(
            pydantic.ValidationError,
            match="Input should be 'CSCSamplingGraph'",
        ):
            dataset.load()

        # Case2. Test modify the `path` field.
        dataset = gb.OnDiskDataset(test_dir)
        dataset.yaml_data["graph_topology"]["path"] = "fake_path"
        with pytest.raises(
            FileNotFoundError,
            match=r"\[Errno 2\] No such file or directory:",
        ):
            dataset.load()
        # Modifying the `path` field to an absolute path should work.
        # In os.path.join, if a segment is an absolute path (which
        # on Windows requires both a drive and a root), then all
        # previous segments are ignored and joining continues from
        # the absolute path segment.
        dataset = gb.OnDiskDataset(test_dir).load()
        original_graph = dataset.graph
        dataset.yaml_data["graph_topology"]["path"] = os.path.join(
            test_dir, dataset.yaml_data["graph_topology"]["path"]
        )
        dataset.load()
        modify_graph = dataset.graph
        assert torch.equal(
            original_graph.csc_indptr,
            modify_graph.csc_indptr,
        )
        original_graph = None
        modify_graph = None
        dataset = None


def test_OnDiskDataset_load_tasks():
    """Test preprocess of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10

        # Generate random graph.
        yaml_content = gbt.random_homo_graphbolt_graph(
            test_dir,
            dataset_name,
            num_nodes,
            num_edges,
            num_classes,
        )
        yaml_file = os.path.join(test_dir, "metadata.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        # Case1. Test modify the `name` field.
        dataset = gb.OnDiskDataset(test_dir)
        dataset.yaml_data["tasks"][0]["name"] = "fake_name"
        dataset.load()
        assert dataset.tasks[0].metadata["name"] == "fake_name"

        # Case2. Test modify the `num_classes` field.
        dataset = gb.OnDiskDataset(test_dir)
        dataset.yaml_data["tasks"][0]["num_classes"] = 100
        dataset.load()
        assert dataset.tasks[0].metadata["num_classes"] == 100

        # Case3. Test modify the `format` field.
        dataset = gb.OnDiskDataset(test_dir)
        # Change the `format` field to torch.
        dataset.yaml_data["tasks"][0]["train_set"][0]["data"][0][
            "format"
        ] = "torch"
        with pytest.raises(pickle.UnpicklingError):
            dataset.load()

        dataset = gb.OnDiskDataset(test_dir)
        dataset.yaml_data["tasks"][0]["train_set"][0]["data"][0][
            "format"
        ] = "torch"
        # Change the `in_memory` field to False will also raise an
        # UnpicklingError. Unlike the case of testing `feature_data`.
        dataset.yaml_data["tasks"][0]["train_set"][0]["data"][0][
            "in_memory"
        ] = False
        with pytest.raises(pickle.UnpicklingError):
            dataset.load()

        # Case4. Test modify the `path` field.
        dataset = gb.OnDiskDataset(test_dir)
        # Use invalid path will raise an FileNotFoundError.
        dataset.yaml_data["tasks"][0]["train_set"][0]["data"][0][
            "path"
        ] = "fake_path"
        with pytest.raises(
            FileNotFoundError,
            match=r"\[Errno 2\] No such file or directory:",
        ):
            dataset.load()

        # Modifying the `path` field to an absolute path should work.
        # In os.path.join, if a segment is an absolute path (which
        # on Windows requires both a drive and a root), then all
        # previous segments are ignored and joining continues from
        # the absolute path segment.
        dataset = gb.OnDiskDataset(test_dir).load()
        original_train_set = dataset.tasks[0].train_set._items
        dataset.yaml_data["tasks"][0]["train_set"][0]["data"][0][
            "path"
        ] = os.path.join(
            test_dir,
            dataset.yaml_data["tasks"][0]["train_set"][0]["data"][0]["path"],
        )
        dataset.load()
        modify_train_set = dataset.tasks[0].train_set._items
        assert torch.equal(
            original_train_set[0],
            modify_train_set[0],
        )
        original_train_set = None
        modify_train_set = None
        dataset = None