test_ondisk_dataset.py 38.6 KB
Newer Older
1
2
3
import os
import tempfile

4
5
import gb_test_utils as gbt

6
import numpy as np
7
import pandas as pd
8
9
10

import pydantic
import pytest
11
import torch
12
import yaml
13
14
15
16
17
18
19
20
21
22
23
from dgl import graphbolt as gb


def test_OnDiskDataset_TVTSet_exceptions():
    """Test excpetions thrown when parsing TVTSet."""
    with tempfile.TemporaryDirectory() as test_dir:
        yaml_file = os.path.join(test_dir, "test.yaml")

        # Case 1: ``format`` is invalid.
        yaml_content = """
        train_sets:
24
          - - type: paper
25
26
27
              data:
                - format: torch_invalid
                  path: set/paper-train.pt
28
29
30
31
32
33
34
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(pydantic.ValidationError):
            _ = gb.OnDiskDataset(yaml_file)

35
        # Case 2: ``type`` is not specified while multiple TVT sets are specified.
36
37
        yaml_content = """
            train_sets:
38
              - - type: null
39
40
41
                  data:
                    - format: numpy
                      path: set/train.npy
42
                - type: null
43
44
45
                  data:
                    - format: numpy
                      path: set/train.npy
46
47
48
49
50
        """
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(
            AssertionError,
51
            match=r"Only one TVT set is allowed if type is not specified.",
52
53
54
55
56
57
58
59
        ):
            _ = gb.OnDiskDataset(yaml_file)


def test_OnDiskDataset_TVTSet_ItemSet_id_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
60
61
        train_ids_path = os.path.join(test_dir, "train_ids.npy")
        np.save(train_ids_path, train_ids)
62
        train_labels = np.random.randint(0, 10, size=1000)
63
64
        train_labels_path = os.path.join(test_dir, "train_labels.npy")
        np.save(train_labels_path, train_labels)
65
66

        validation_ids = np.arange(1000, 2000)
67
68
        validation_ids_path = os.path.join(test_dir, "validation_ids.npy")
        np.save(validation_ids_path, validation_ids)
69
        validation_labels = np.random.randint(0, 10, size=1000)
70
71
        validation_labels_path = os.path.join(test_dir, "validation_labels.npy")
        np.save(validation_labels_path, validation_labels)
72
73

        test_ids = np.arange(2000, 3000)
74
75
        test_ids_path = os.path.join(test_dir, "test_ids.npy")
        np.save(test_ids_path, test_ids)
76
        test_labels = np.random.randint(0, 10, size=1000)
77
78
        test_labels_path = os.path.join(test_dir, "test_labels.npy")
        np.save(test_labels_path, test_labels)
79
80
81

        # Case 1:
        #   all TVT sets are specified.
82
        #   ``type`` is not specified or specified as ``null``.
83
84
85
        #   ``in_memory`` could be ``true`` and ``false``.
        yaml_content = f"""
            train_sets:
86
              - - type: null
87
88
89
90
91
92
93
                  data:
                    - format: numpy
                      in_memory: true
                      path: {train_ids_path}
                    - format: numpy
                      in_memory: true
                      path: {train_labels_path}
94
            validation_sets:
95
96
97
98
99
100
101
              - - data:
                    - format: numpy
                      in_memory: true
                      path: {validation_ids_path}
                    - format: numpy
                      in_memory: true
                      path: {validation_labels_path}
102
            test_sets:
103
              - - type: null
104
105
106
107
108
109
110
                  data:
                    - format: numpy
                      in_memory: true
                      path: {test_ids_path}
                    - format: numpy
                      in_memory: true
                      path: {test_labels_path}
111
112
113
114
115
116
117
118
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
119
        train_sets = dataset.train_sets
120
        assert len(train_sets) == 1
121
122
123
124
125
126
127
128
129
        for train_set in train_sets:
            assert len(train_set) == 1000
            assert isinstance(train_set, gb.ItemSet)
            for i, (id, label) in enumerate(train_set):
                assert id == train_ids[i]
                assert label == train_labels[i]
        train_sets = None

        # Verify validation set.
130
        validation_sets = dataset.validation_sets
131
        assert len(validation_sets) == 1
132
133
134
135
136
137
138
139
140
        for validation_set in validation_sets:
            assert len(validation_set) == 1000
            assert isinstance(validation_set, gb.ItemSet)
            for i, (id, label) in enumerate(validation_set):
                assert id == validation_ids[i]
                assert label == validation_labels[i]
        validation_sets = None

        # Verify test set.
141
        test_sets = dataset.test_sets
142
        assert len(test_sets) == 1
143
144
145
146
147
148
149
150
151
152
153
154
        for test_set in test_sets:
            assert len(test_set) == 1000
            assert isinstance(test_set, gb.ItemSet)
            for i, (id, label) in enumerate(test_set):
                assert id == test_ids[i]
                assert label == test_labels[i]
        test_sets = None
        dataset = None

        # Case 2: Some TVT sets are None.
        yaml_content = f"""
            train_sets:
155
              - - type: null
156
157
158
                  data:
                    - format: numpy
                      path: {train_ids_path}
159
160
161
162
163
164
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
165
166
167
        assert dataset.train_sets is not None
        assert dataset.validation_sets is None
        assert dataset.test_sets is None
168
169
170
171
172
173
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSet_node_pair_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
174
175
176
177
178
179
        train_src = np.arange(1000)
        train_src_path = os.path.join(test_dir, "train_src.npy")
        np.save(train_src_path, train_src)
        train_dst = np.arange(1000, 2000)
        train_dst_path = os.path.join(test_dir, "train_dst.npy")
        np.save(train_dst_path, train_dst)
180
        train_labels = np.random.randint(0, 10, size=1000)
181
182
183
184
185
186
187
188
189
        train_labels_path = os.path.join(test_dir, "train_labels.npy")
        np.save(train_labels_path, train_labels)

        validation_src = np.arange(1000, 2000)
        validation_src_path = os.path.join(test_dir, "validation_src.npy")
        np.save(validation_src_path, validation_src)
        validation_dst = np.arange(2000, 3000)
        validation_dst_path = os.path.join(test_dir, "validation_dst.npy")
        np.save(validation_dst_path, validation_dst)
190
        validation_labels = np.random.randint(0, 10, size=1000)
191
192
193
194
195
196
197
198
199
        validation_labels_path = os.path.join(test_dir, "validation_labels.npy")
        np.save(validation_labels_path, validation_labels)

        test_src = np.arange(2000, 3000)
        test_src_path = os.path.join(test_dir, "test_src.npy")
        np.save(test_src_path, test_src)
        test_dst = np.arange(3000, 4000)
        test_dst_path = os.path.join(test_dir, "test_dst.npy")
        np.save(test_dst_path, test_dst)
200
        test_labels = np.random.randint(0, 10, size=1000)
201
202
        test_labels_path = os.path.join(test_dir, "test_labels.npy")
        np.save(test_labels_path, test_labels)
203
204
205

        yaml_content = f"""
            train_sets:
206
              - - type: null
207
208
209
210
211
212
213
214
215
216
                  data:
                    - format: numpy
                      in_memory: true
                      path: {train_src_path}
                    - format: numpy
                      in_memory: true
                      path: {train_dst_path}
                    - format: numpy
                      in_memory: true
                      path: {train_labels_path}
217
            validation_sets:
218
219
220
221
222
223
224
225
226
227
              - - data:
                    - format: numpy
                      in_memory: true
                      path: {validation_src_path}
                    - format: numpy
                      in_memory: true
                      path: {validation_dst_path}
                    - format: numpy
                      in_memory: true
                      path: {validation_labels_path}
228
            test_sets:
229
              - - type: null
230
231
232
233
234
235
236
237
238
239
                  data:
                    - format: numpy
                      in_memory: true
                      path: {test_src_path}
                    - format: numpy
                      in_memory: true
                      path: {test_dst_path}
                    - format: numpy
                      in_memory: true
                      path: {test_labels_path}
240
241
242
243
244
245
246
247
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
248
        train_sets = dataset.train_sets
249
        assert len(train_sets) == 1
250
251
252
253
        for train_set in train_sets:
            assert len(train_set) == 1000
            assert isinstance(train_set, gb.ItemSet)
            for i, (src, dst, label) in enumerate(train_set):
254
255
                assert src == train_src[i]
                assert dst == train_dst[i]
256
257
258
259
                assert label == train_labels[i]
        train_sets = None

        # Verify validation set.
260
        validation_sets = dataset.validation_sets
261
        assert len(validation_sets) == 1
262
263
264
265
        for validation_set in validation_sets:
            assert len(validation_set) == 1000
            assert isinstance(validation_set, gb.ItemSet)
            for i, (src, dst, label) in enumerate(validation_set):
266
267
                assert src == validation_src[i]
                assert dst == validation_dst[i]
268
269
270
271
                assert label == validation_labels[i]
        validation_sets = None

        # Verify test set.
272
        test_sets = dataset.test_sets
273
        assert len(test_sets) == 1
274
275
276
277
        for test_set in test_sets:
            assert len(test_set) == 1000
            assert isinstance(test_set, gb.ItemSet)
            for i, (src, dst, label) in enumerate(test_set):
278
279
                assert src == test_src[i]
                assert dst == test_dst[i]
280
281
282
283
284
                assert label == test_labels[i]
        test_sets = None
        dataset = None


285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
def test_OnDiskDataset_TVTSet_ItemSet_node_pair_negs():
    """Test TVTSet which returns ItemSet with node pairs and negative ones."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_src = np.arange(1000)
        train_src_path = os.path.join(test_dir, "train_src.npy")
        np.save(train_src_path, train_src)
        train_dst = np.arange(1000, 2000)
        train_dst_path = os.path.join(test_dir, "train_dst.npy")
        np.save(train_dst_path, train_dst)
        train_neg_dst = np.random.choice(1000 * 10, size=1000 * 10).reshape(
            1000, 10
        )
        train_neg_dst_path = os.path.join(test_dir, "train_neg_dst.npy")
        np.save(train_neg_dst_path, train_neg_dst)

        validation_src = np.arange(1000, 2000)
        validation_src_path = os.path.join(test_dir, "validation_src.npy")
        np.save(validation_src_path, validation_src)
        validation_dst = np.arange(2000, 3000)
        validation_dst_path = os.path.join(test_dir, "validation_dst.npy")
        np.save(validation_dst_path, validation_dst)
        validation_neg_dst = train_neg_dst + 1
        validation_neg_dst_path = os.path.join(
            test_dir, "validation_neg_dst.npy"
        )
        np.save(validation_neg_dst_path, validation_neg_dst)

        test_src = np.arange(2000, 3000)
        test_src_path = os.path.join(test_dir, "test_src.npy")
        np.save(test_src_path, test_src)
        test_dst = np.arange(3000, 4000)
        test_dst_path = os.path.join(test_dir, "test_dst.npy")
        np.save(test_dst_path, test_dst)
        test_neg_dst = train_neg_dst + 2
        test_neg_dst_path = os.path.join(test_dir, "test_neg_dst.npy")
        np.save(test_neg_dst_path, test_neg_dst)

        yaml_content = f"""
            train_sets:
              - - type: null
                  data:
                    - format: numpy
                      in_memory: true
                      path: {train_src_path}
                    - format: numpy
                      in_memory: true
                      path: {train_dst_path}
                    - format: numpy
                      in_memory: true
                      path: {train_neg_dst_path}
            validation_sets:
              - - data:
                    - format: numpy
                      in_memory: true
                      path: {validation_src_path}
                    - format: numpy
                      in_memory: true
                      path: {validation_dst_path}
                    - format: numpy
                      in_memory: true
                      path: {validation_neg_dst_path}
            test_sets:
              - - type: null
                  data:
                    - format: numpy
                      in_memory: true
                      path: {test_src_path}
                    - format: numpy
                      in_memory: true
                      path: {test_dst_path}
                    - format: numpy
                      in_memory: true
                      path: {test_neg_dst_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
        train_sets = dataset.train_sets
        assert len(train_sets) == 1
        for train_set in train_sets:
            assert len(train_set) == 1000
            assert isinstance(train_set, gb.ItemSet)
            for i, (src, dst, negs) in enumerate(train_set):
                assert src == train_src[i]
                assert dst == train_dst[i]
                assert torch.equal(negs, torch.from_numpy(train_neg_dst[i]))
        train_sets = None

        # Verify validation set.
        validation_sets = dataset.validation_sets
        assert len(validation_sets) == 1
        for validation_set in validation_sets:
            assert len(validation_set) == 1000
            assert isinstance(validation_set, gb.ItemSet)
            for i, (src, dst, negs) in enumerate(validation_set):
                assert src == validation_src[i]
                assert dst == validation_dst[i]
                assert torch.equal(
                    negs, torch.from_numpy(validation_neg_dst[i])
                )
        validation_sets = None

        # Verify test set.
        test_sets = dataset.test_sets
        assert len(test_sets) == 1
        for test_set in test_sets:
            assert len(test_set) == 1000
            assert isinstance(test_set, gb.ItemSet)
            for i, (src, dst, negs) in enumerate(test_set):
                assert src == test_src[i]
                assert dst == test_dst[i]
                assert torch.equal(negs, torch.from_numpy(test_neg_dst[i]))
        test_sets = None
        dataset = None


405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def test_OnDiskDataset_TVTSet_ItemSetDict_id_label():
    """Test TVTSet which returns ItemSetDict with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_ids, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_ids = np.arange(1000, 2000)
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_ids, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_ids = np.arange(2000, 3000)
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_ids, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            train_sets:
428
              - - type: paper
429
430
431
432
                  data:
                    - format: numpy
                      in_memory: true
                      path: {train_path}
433
              - - type: author
434
435
436
                  data:
                    - format: numpy
                      path: {train_path}
437
            validation_sets:
438
              - - type: paper
439
440
441
                  data:
                    - format: numpy
                      path: {validation_path}
442
              - - type: author
443
444
445
                  data:
                    - format: numpy
                      path: {validation_path}
446
            test_sets:
447
              - - type: paper
448
449
450
451
                  data:
                    - format: numpy
                      in_memory: false
                      path: {test_path}
452
              - - type: author
453
454
455
                  data:
                    - format: numpy
                      path: {test_path}
456
457
458
459
460
461
462
463
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
464
        train_sets = dataset.train_sets
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        assert len(train_sets) == 2
        for train_set in train_sets:
            assert len(train_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(train_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                id, label = item[key]
                assert id == train_ids[i]
                assert label == train_labels[i]
        train_sets = None

        # Verify validation set.
480
        validation_sets = dataset.validation_sets
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        assert len(validation_sets) == 2
        for validation_set in validation_sets:
            assert len(validation_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(validation_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                id, label = item[key]
                assert id == validation_ids[i]
                assert label == validation_labels[i]
        validation_sets = None

        # Verify test set.
496
        test_sets = dataset.test_sets
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        assert len(test_sets) == 2
        for test_set in test_sets:
            assert len(test_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(test_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                id, label = item[key]
                assert id == test_ids[i]
                assert label == test_labels[i]
        test_sets = None
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSetDict_node_pair_label():
    """Test TVTSet which returns ItemSetDict with node pairs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            train_sets:
536
              - - type: paper
537
538
539
540
                  data:
                    - format: numpy
                      in_memory: true
                      path: {train_path}
541
              - - type: author
542
543
544
                  data:
                    - format: numpy
                      path: {train_path}
545
            validation_sets:
546
              - - type: paper
547
548
549
                  data:
                    - format: numpy
                      path: {validation_path}
550
              - - type: author
551
552
553
                  data:
                    - format: numpy
                      path: {validation_path}
554
            test_sets:
555
              - - type: paper
556
557
558
559
                  data:
                    - format: numpy
                      in_memory: false
                      path: {test_path}
560
              - - type: author
561
562
563
                  data:
                    - format: numpy
                      path: {test_path}
564
565
566
567
568
569
570
571
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
572
        train_sets = dataset.train_sets
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        assert len(train_sets) == 2
        for train_set in train_sets:
            assert len(train_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(train_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                src, dst, label = item[key]
                assert src == train_pairs[0][i]
                assert dst == train_pairs[1][i]
                assert label == train_labels[i]
        train_sets = None

        # Verify validation set.
589
        validation_sets = dataset.validation_sets
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        assert len(validation_sets) == 2
        for validation_set in validation_sets:
            assert len(validation_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(validation_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                src, dst, label = item[key]
                assert src == validation_pairs[0][i]
                assert dst == validation_pairs[1][i]
                assert label == validation_labels[i]
        validation_sets = None

        # Verify test set.
606
        test_sets = dataset.test_sets
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
        assert len(test_sets) == 2
        for test_set in test_sets:
            assert len(test_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(test_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                src, dst, label = item[key]
                assert src == test_pairs[0][i]
                assert dst == test_pairs[1][i]
                assert label == test_labels[i]
        test_sets = None
        dataset = None
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677


def test_OnDiskDataset_Feature_heterograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_paper = np.random.rand(1000, 10)
        node_data_paper_path = os.path.join(test_dir, "node_data_paper.npy")
        np.save(node_data_paper_path, node_data_paper)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_writes = np.random.rand(1000, 10)
        edge_data_writes_path = os.path.join(test_dir, "edge_writes_paper.npy")
        np.save(edge_data_writes_path, edge_data_writes)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                type: paper
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_paper_path}
              - domain: node
                type: paper
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                type: "author:writes:paper"
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_writes_path}
              - domain: edge
                type: "author:writes:paper"
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify feature data storage.
678
        feature_data = dataset.feature
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
        assert len(feature_data) == 4

        # Verify node feature data.
        node_paper_feat = feature_data[("node", "paper", "feat")]
        assert isinstance(node_paper_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(
            node_paper_feat.read(), torch.tensor(node_data_paper)
        )
        node_paper_label = feature_data[("node", "paper", "label")]
        assert isinstance(node_paper_label, gb.TorchBasedFeatureStore)
        assert torch.equal(
            node_paper_label.read(), torch.tensor(node_data_label)
        )

        # Verify edge feature data.
        edge_writes_feat = feature_data[("edge", "author:writes:paper", "feat")]
        assert isinstance(edge_writes_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(
            edge_writes_feat.read(), torch.tensor(edge_data_writes)
        )
        edge_writes_label = feature_data[
            ("edge", "author:writes:paper", "label")
        ]
        assert isinstance(edge_writes_label, gb.TorchBasedFeatureStore)
        assert torch.equal(
            edge_writes_label.read(), torch.tensor(edge_data_label)
        )

        node_paper_feat = None
        node_paper_label = None
        edge_writes_feat = None
        edge_writes_label = None
        feature_data = None
        dataset = None


def test_OnDiskDataset_Feature_homograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_feat = np.random.rand(1000, 10)
        node_data_feat_path = os.path.join(test_dir, "node_data_feat.npy")
        np.save(node_data_feat_path, node_data_feat)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_feat = np.random.rand(1000, 10)
        edge_data_feat_path = os.path.join(test_dir, "edge_data_feat.npy")
        np.save(edge_data_feat_path, edge_data_feat)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        # ``type`` is not specified in the YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_feat_path}
              - domain: node
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_feat_path}
              - domain: edge
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify feature data storage.
766
        feature_data = dataset.feature
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
        assert len(feature_data) == 4

        # Verify node feature data.
        node_feat = feature_data[("node", None, "feat")]
        assert isinstance(node_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(node_feat.read(), torch.tensor(node_data_feat))
        node_label = feature_data[("node", None, "label")]
        assert isinstance(node_label, gb.TorchBasedFeatureStore)
        assert torch.equal(node_label.read(), torch.tensor(node_data_label))

        # Verify edge feature data.
        edge_feat = feature_data[("edge", None, "feat")]
        assert isinstance(edge_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(edge_feat.read(), torch.tensor(edge_data_feat))
        edge_label = feature_data[("edge", None, "label")]
        assert isinstance(edge_label, gb.TorchBasedFeatureStore)
        assert torch.equal(edge_label.read(), torch.tensor(edge_data_label))

        node_feat = None
        node_label = None
        edge_feat = None
        edge_label = None
        feature_data = None
        dataset = None
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807


def test_OnDiskDataset_Graph_Exceptions():
    """Test exceptions in parsing graph topology."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Invalid graph type.
        yaml_content = """
            graph_topology:
              type: CSRSamplingGraph
              path: /path/to/graph
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        with pytest.raises(
            pydantic.ValidationError,
808
            match="1 validation error for OnDiskMetaData",
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
        ):
            _ = gb.OnDiskDataset(yaml_file)


def test_OnDiskDataset_Graph_homogeneous():
    """Test homogeneous graph topology."""
    csc_indptr, indices = gbt.random_homo_graph(1000, 10 * 1000)
    graph = gb.from_csc(csc_indptr, indices)

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
832
        graph2 = dataset.graph
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)

        assert graph.metadata is None and graph2.metadata is None
        assert (
            graph.node_type_offset is None and graph2.node_type_offset is None
        )
        assert graph.type_per_edge is None and graph2.type_per_edge is None


def test_OnDiskDataset_Graph_heterogeneous():
    """Test heterogeneous graph topology."""
    (
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
        metadata,
    ) = gbt.random_hetero_graph(1000, 10 * 1000, 3, 4)
    graph = gb.from_csc(
857
        csc_indptr, indices, node_type_offset, type_per_edge, None, metadata
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
    )

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
874
        graph2 = dataset.graph
875
876
877
878
879
880
881
882
883
884

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)
        assert torch.equal(graph.node_type_offset, graph2.node_type_offset)
        assert torch.equal(graph.type_per_edge, graph2.type_per_edge)
        assert graph.metadata.node_type_to_id == graph2.metadata.node_type_to_id
        assert graph.metadata.edge_type_to_id == graph2.metadata.edge_type_to_id
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919


def test_OnDiskDataset_Metadata():
    """Test metadata of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_classes = 10
        num_labels = 9
        yaml_content = f"""
            dataset_name: {dataset_name}
            num_classes: {num_classes}
            num_labels: {num_labels}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
        assert dataset.dataset_name == dataset_name
        assert dataset.num_classes == num_classes
        assert dataset.num_labels == num_labels

        # Only dataset_name is specified.
        yaml_content = f"""
            dataset_name: {dataset_name}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
        assert dataset.dataset_name == dataset_name
        assert dataset.num_classes is None
        assert dataset.num_labels is None
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999


def test_OnDiskDataset_preprocess_homogeneous():
    """Test preprocess of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10
        num_labels = 9

        # Generate random edges.
        nodes = np.repeat(np.arange(num_nodes), 5)
        neighbors = np.random.randint(0, num_nodes, size=(num_edges))
        edges = np.stack([nodes, neighbors], axis=1)
        # Wrtie into edges/edge.csv
        os.makedirs(os.path.join(test_dir, "edges/"), exist_ok=True)
        edges = pd.DataFrame(edges, columns=["src", "dst"])
        edges.to_csv(
            os.path.join(test_dir, "edges/edge.csv"),
            index=False,
            header=False,
        )

        # Generate random graph edge-feats.
        edge_feats = np.random.rand(num_edges, 5)
        os.makedirs(os.path.join(test_dir, "data/"), exist_ok=True)
        np.save(os.path.join(test_dir, "data/edge-feat.npy"), edge_feats)

        # Generate random node-feats.
        node_feats = np.random.rand(num_nodes, 10)
        np.save(os.path.join(test_dir, "data/node-feat.npy"), node_feats)

        # Generate train/test/valid set.
        os.makedirs(os.path.join(test_dir, "set/"), exist_ok=True)
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "set/train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "set/validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "set/test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            dataset_name: {dataset_name}
            num_classes: {num_classes}
            num_labels: {num_labels}
            graph: # graph structure and required attributes.
                nodes:
                    - num: {num_nodes}
                edges:
                    - format: csv
                      path: edges/edge.csv
                feature_data:
                    - domain: edge
                      type: null
                      name: feat
                      format: numpy
                      in_memory: true
                      path: data/edge-feat.npy
            feature_data:
                - domain: node
                  type: null
                  name: feat
                  format: numpy
                  in_memory: false
                  path: data/node-feat.npy
            train_sets:
                - - type_name: null
1000
1001
1002
                    data:
                      - format: numpy
                        path: set/train.npy
1003
1004
            validation_sets:
                - - type_name: null
1005
1006
1007
                    data:
                      - format: numpy
                        path: set/validation.npy
1008
1009
            test_sets:
                - - type_name: null
1010
1011
1012
                    data:
                      - format: numpy
                        path: set/test.npy
1013
1014
1015
1016
1017
1018
1019
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        output_file = gb.ondisk_dataset.preprocess_ondisk_dataset(yaml_file)

        with open(output_file, "rb") as f:
1020
            processed_dataset = yaml.load(f, Loader=yaml.Loader)
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

        assert processed_dataset["dataset_name"] == dataset_name
        assert processed_dataset["num_classes"] == num_classes
        assert processed_dataset["num_labels"] == num_labels
        assert "graph" not in processed_dataset
        assert "graph_topology" in processed_dataset

        csc_sampling_graph = gb.csc_sampling_graph.load_csc_sampling_graph(
            os.path.join(test_dir, processed_dataset["graph_topology"]["path"])
        )
        assert csc_sampling_graph.num_nodes == num_nodes
        assert csc_sampling_graph.num_edges == num_edges

        num_samples = 100
        fanout = 1
        subgraph = csc_sampling_graph.sample_neighbors(
            torch.arange(num_samples),
            torch.tensor([fanout]),
        )
        assert len(list(subgraph.node_pairs.values())[0][0]) <= num_samples