test_ondisk_dataset.py 36.7 KB
Newer Older
1
2
3
import os
import tempfile

4
5
import gb_test_utils as gbt

6
import numpy as np
7
import pandas as pd
8
9
10

import pydantic
import pytest
11
import torch
12
import yaml
13
14
15
16
17
18
19
20
21
22
from dgl import graphbolt as gb


def test_OnDiskDataset_TVTSet_exceptions():
    """Test excpetions thrown when parsing TVTSet."""
    with tempfile.TemporaryDirectory() as test_dir:
        yaml_file = os.path.join(test_dir, "test.yaml")

        # Case 1: ``format`` is invalid.
        yaml_content = """
23
24
25
26
27
        train_set:
          - type: paper
            data:
              - format: torch_invalid
                path: set/paper-train.pt
28
29
30
31
32
33
34
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(pydantic.ValidationError):
            _ = gb.OnDiskDataset(yaml_file)

35
        # Case 2: ``type`` is not specified while multiple TVT sets are specified.
36
        yaml_content = """
37
38
39
40
41
42
43
44
45
            train_set:
              - type: null
                data:
                  - format: numpy
                    path: set/train.npy
              - type: null
                data:
                  - format: numpy
                    path: set/train.npy
46
47
48
49
50
        """
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(
            AssertionError,
51
            match=r"Only one TVT set is allowed if type is not specified.",
52
53
54
55
56
57
58
59
        ):
            _ = gb.OnDiskDataset(yaml_file)


def test_OnDiskDataset_TVTSet_ItemSet_id_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
60
61
        train_ids_path = os.path.join(test_dir, "train_ids.npy")
        np.save(train_ids_path, train_ids)
62
        train_labels = np.random.randint(0, 10, size=1000)
63
64
        train_labels_path = os.path.join(test_dir, "train_labels.npy")
        np.save(train_labels_path, train_labels)
65
66

        validation_ids = np.arange(1000, 2000)
67
68
        validation_ids_path = os.path.join(test_dir, "validation_ids.npy")
        np.save(validation_ids_path, validation_ids)
69
        validation_labels = np.random.randint(0, 10, size=1000)
70
71
        validation_labels_path = os.path.join(test_dir, "validation_labels.npy")
        np.save(validation_labels_path, validation_labels)
72
73

        test_ids = np.arange(2000, 3000)
74
75
        test_ids_path = os.path.join(test_dir, "test_ids.npy")
        np.save(test_ids_path, test_ids)
76
        test_labels = np.random.randint(0, 10, size=1000)
77
78
        test_labels_path = os.path.join(test_dir, "test_labels.npy")
        np.save(test_labels_path, test_labels)
79
80
81

        # Case 1:
        #   all TVT sets are specified.
82
        #   ``type`` is not specified or specified as ``null``.
83
84
        #   ``in_memory`` could be ``true`` and ``false``.
        yaml_content = f"""
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            train_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_ids_path}
                  - format: numpy
                    in_memory: true
                    path: {train_labels_path}
            validation_set:
              - data:
                  - format: numpy
                    in_memory: true
                    path: {validation_ids_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_labels_path}
            test_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {test_ids_path}
                  - format: numpy
                    in_memory: true
                    path: {test_labels_path}
111
112
113
114
115
116
117
118
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
119
120
121
122
123
124
125
        train_set = dataset.train_set
        assert len(train_set) == 1000
        assert isinstance(train_set, gb.ItemSet)
        for i, (id, label) in enumerate(train_set):
            assert id == train_ids[i]
            assert label == train_labels[i]
        train_set = None
126
127

        # Verify validation set.
128
129
130
131
132
133
134
        validation_set = dataset.validation_set
        assert len(validation_set) == 1000
        assert isinstance(validation_set, gb.ItemSet)
        for i, (id, label) in enumerate(validation_set):
            assert id == validation_ids[i]
            assert label == validation_labels[i]
        validation_set = None
135
136

        # Verify test set.
137
138
139
140
141
142
143
        test_set = dataset.test_set
        assert len(test_set) == 1000
        assert isinstance(test_set, gb.ItemSet)
        for i, (id, label) in enumerate(test_set):
            assert id == test_ids[i]
            assert label == test_labels[i]
        test_set = None
144
145
146
147
        dataset = None

        # Case 2: Some TVT sets are None.
        yaml_content = f"""
148
149
150
151
152
            train_set:
              - type: null
                data:
                  - format: numpy
                    path: {train_ids_path}
153
154
155
156
157
158
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
159
160
161
        assert dataset.train_set is not None
        assert dataset.validation_set is None
        assert dataset.test_set is None
162
163
164
165
166
167
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSet_node_pair_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
168
169
170
171
172
173
        train_src = np.arange(1000)
        train_src_path = os.path.join(test_dir, "train_src.npy")
        np.save(train_src_path, train_src)
        train_dst = np.arange(1000, 2000)
        train_dst_path = os.path.join(test_dir, "train_dst.npy")
        np.save(train_dst_path, train_dst)
174
        train_labels = np.random.randint(0, 10, size=1000)
175
176
177
178
179
180
181
182
183
        train_labels_path = os.path.join(test_dir, "train_labels.npy")
        np.save(train_labels_path, train_labels)

        validation_src = np.arange(1000, 2000)
        validation_src_path = os.path.join(test_dir, "validation_src.npy")
        np.save(validation_src_path, validation_src)
        validation_dst = np.arange(2000, 3000)
        validation_dst_path = os.path.join(test_dir, "validation_dst.npy")
        np.save(validation_dst_path, validation_dst)
184
        validation_labels = np.random.randint(0, 10, size=1000)
185
186
187
188
189
190
191
192
193
        validation_labels_path = os.path.join(test_dir, "validation_labels.npy")
        np.save(validation_labels_path, validation_labels)

        test_src = np.arange(2000, 3000)
        test_src_path = os.path.join(test_dir, "test_src.npy")
        np.save(test_src_path, test_src)
        test_dst = np.arange(3000, 4000)
        test_dst_path = os.path.join(test_dir, "test_dst.npy")
        np.save(test_dst_path, test_dst)
194
        test_labels = np.random.randint(0, 10, size=1000)
195
196
        test_labels_path = os.path.join(test_dir, "test_labels.npy")
        np.save(test_labels_path, test_labels)
197
198

        yaml_content = f"""
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
            train_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_src_path}
                  - format: numpy
                    in_memory: true
                    path: {train_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {train_labels_path}
            validation_set:
              - data:
                  - format: numpy
                    in_memory: true
                    path: {validation_src_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_labels_path}
            test_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {test_src_path}
                  - format: numpy
                    in_memory: true
                    path: {test_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {test_labels_path}
234
235
236
237
238
239
240
241
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
242
243
244
245
246
247
248
249
        train_set = dataset.train_set
        assert len(train_set) == 1000
        assert isinstance(train_set, gb.ItemSet)
        for i, (src, dst, label) in enumerate(train_set):
            assert src == train_src[i]
            assert dst == train_dst[i]
            assert label == train_labels[i]
        train_set = None
250
251

        # Verify validation set.
252
253
254
255
256
257
258
259
        validation_set = dataset.validation_set
        assert len(validation_set) == 1000
        assert isinstance(validation_set, gb.ItemSet)
        for i, (src, dst, label) in enumerate(validation_set):
            assert src == validation_src[i]
            assert dst == validation_dst[i]
            assert label == validation_labels[i]
        validation_set = None
260
261

        # Verify test set.
262
263
264
265
266
267
268
269
        test_set = dataset.test_set
        assert len(test_set) == 1000
        assert isinstance(test_set, gb.ItemSet)
        for i, (src, dst, label) in enumerate(test_set):
            assert src == test_src[i]
            assert dst == test_dst[i]
            assert label == test_labels[i]
        test_set = None
270
271
272
        dataset = None


273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def test_OnDiskDataset_TVTSet_ItemSet_node_pair_negs():
    """Test TVTSet which returns ItemSet with node pairs and negative ones."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_src = np.arange(1000)
        train_src_path = os.path.join(test_dir, "train_src.npy")
        np.save(train_src_path, train_src)
        train_dst = np.arange(1000, 2000)
        train_dst_path = os.path.join(test_dir, "train_dst.npy")
        np.save(train_dst_path, train_dst)
        train_neg_dst = np.random.choice(1000 * 10, size=1000 * 10).reshape(
            1000, 10
        )
        train_neg_dst_path = os.path.join(test_dir, "train_neg_dst.npy")
        np.save(train_neg_dst_path, train_neg_dst)

        validation_src = np.arange(1000, 2000)
        validation_src_path = os.path.join(test_dir, "validation_src.npy")
        np.save(validation_src_path, validation_src)
        validation_dst = np.arange(2000, 3000)
        validation_dst_path = os.path.join(test_dir, "validation_dst.npy")
        np.save(validation_dst_path, validation_dst)
        validation_neg_dst = train_neg_dst + 1
        validation_neg_dst_path = os.path.join(
            test_dir, "validation_neg_dst.npy"
        )
        np.save(validation_neg_dst_path, validation_neg_dst)

        test_src = np.arange(2000, 3000)
        test_src_path = os.path.join(test_dir, "test_src.npy")
        np.save(test_src_path, test_src)
        test_dst = np.arange(3000, 4000)
        test_dst_path = os.path.join(test_dir, "test_dst.npy")
        np.save(test_dst_path, test_dst)
        test_neg_dst = train_neg_dst + 2
        test_neg_dst_path = os.path.join(test_dir, "test_neg_dst.npy")
        np.save(test_neg_dst_path, test_neg_dst)

        yaml_content = f"""
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
            train_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_src_path}
                  - format: numpy
                    in_memory: true
                    path: {train_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {train_neg_dst_path}
            validation_set:
              - data:
                  - format: numpy
                    in_memory: true
                    path: {validation_src_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_neg_dst_path}
            test_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {test_src_path}
                  - format: numpy
                    in_memory: true
                    path: {test_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {test_neg_dst_path}
346
347
348
349
350
351
352
353
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
354
355
356
357
358
359
360
361
        train_set = dataset.train_set
        assert len(train_set) == 1000
        assert isinstance(train_set, gb.ItemSet)
        for i, (src, dst, negs) in enumerate(train_set):
            assert src == train_src[i]
            assert dst == train_dst[i]
            assert torch.equal(negs, torch.from_numpy(train_neg_dst[i]))
        train_set = None
362
363

        # Verify validation set.
364
365
366
367
368
369
370
371
        validation_set = dataset.validation_set
        assert len(validation_set) == 1000
        assert isinstance(validation_set, gb.ItemSet)
        for i, (src, dst, negs) in enumerate(validation_set):
            assert src == validation_src[i]
            assert dst == validation_dst[i]
            assert torch.equal(negs, torch.from_numpy(validation_neg_dst[i]))
        validation_set = None
372
373

        # Verify test set.
374
375
376
377
378
379
380
381
        test_set = dataset.test_set
        assert len(test_set) == 1000
        assert isinstance(test_set, gb.ItemSet)
        for i, (src, dst, negs) in enumerate(test_set):
            assert src == test_src[i]
            assert dst == test_dst[i]
            assert torch.equal(negs, torch.from_numpy(test_neg_dst[i]))
        test_set = None
382
383
384
        dataset = None


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
def test_OnDiskDataset_TVTSet_ItemSetDict_id_label():
    """Test TVTSet which returns ItemSetDict with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_ids, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_ids = np.arange(1000, 2000)
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_ids, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_ids = np.arange(2000, 3000)
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_ids, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
            train_set:
              - type: paper
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_path}
              - type: author
                data:
                  - format: numpy
                    path: {train_path}
            validation_set:
              - type: paper
                data:
                  - format: numpy
                    path: {validation_path}
              - type: author
                data:
                  - format: numpy
                    path: {validation_path}
            test_set:
              - type: paper
                data:
                  - format: numpy
                    in_memory: false
                    path: {test_path}
              - type: author
                data:
                  - format: numpy
                    path: {test_path}
436
437
438
439
440
441
442
443
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
444
445
446
447
448
449
450
451
452
453
454
455
        train_set = dataset.train_set
        assert len(train_set) == 2000
        assert isinstance(train_set, gb.ItemSetDict)
        for i, item in enumerate(train_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            id, label = item[key]
            assert id == train_ids[i % 1000]
            assert label == train_labels[i % 1000]
        train_set = None
456
457

        # Verify validation set.
458
459
460
461
462
463
464
465
466
467
468
469
        validation_set = dataset.validation_set
        assert len(validation_set) == 2000
        assert isinstance(validation_set, gb.ItemSetDict)
        for i, item in enumerate(validation_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            id, label = item[key]
            assert id == validation_ids[i % 1000]
            assert label == validation_labels[i % 1000]
        validation_set = None
470
471

        # Verify test set.
472
473
474
475
476
477
478
479
480
481
482
483
        test_set = dataset.test_set
        assert len(test_set) == 2000
        assert isinstance(test_set, gb.ItemSetDict)
        for i, item in enumerate(test_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            id, label = item[key]
            assert id == test_ids[i % 1000]
            assert label == test_labels[i % 1000]
        test_set = None
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSetDict_node_pair_label():
    """Test TVTSet which returns ItemSetDict with node pairs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
            train_set:
              - type: paper
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_path}
              - type: author
                data:
                  - format: numpy
                    path: {train_path}
            validation_set:
              - type: paper
                data:
                  - format: numpy
                    path: {validation_path}
              - type: author
                data:
                  - format: numpy
                    path: {validation_path}
            test_set:
              - type: paper
                data:
                  - format: numpy
                    in_memory: false
                    path: {test_path}
              - type: author
                data:
                  - format: numpy
                    path: {test_path}
538
539
540
541
542
543
544
545
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
546
547
548
549
550
551
552
553
554
555
556
557
558
        train_set = dataset.train_set
        assert len(train_set) == 2000
        assert isinstance(train_set, gb.ItemSetDict)
        for i, item in enumerate(train_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            src, dst, label = item[key]
            assert src == train_pairs[0][i % 1000]
            assert dst == train_pairs[1][i % 1000]
            assert label == train_labels[i % 1000]
        train_set = None
559
560

        # Verify validation set.
561
562
563
564
565
566
567
568
569
570
571
572
573
        validation_set = dataset.validation_set
        assert len(validation_set) == 2000
        assert isinstance(validation_set, gb.ItemSetDict)
        for i, item in enumerate(validation_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            src, dst, label = item[key]
            assert src == validation_pairs[0][i % 1000]
            assert dst == validation_pairs[1][i % 1000]
            assert label == validation_labels[i % 1000]
        validation_set = None
574
575

        # Verify test set.
576
577
578
579
580
581
582
583
584
585
586
587
588
        test_set = dataset.test_set
        assert len(test_set) == 2000
        assert isinstance(test_set, gb.ItemSetDict)
        for i, item in enumerate(test_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            src, dst, label = item[key]
            assert src == test_pairs[0][i % 1000]
            assert dst == test_pairs[1][i % 1000]
            assert label == test_labels[i % 1000]
        test_set = None
589
        dataset = None
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645


def test_OnDiskDataset_Feature_heterograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_paper = np.random.rand(1000, 10)
        node_data_paper_path = os.path.join(test_dir, "node_data_paper.npy")
        np.save(node_data_paper_path, node_data_paper)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_writes = np.random.rand(1000, 10)
        edge_data_writes_path = os.path.join(test_dir, "edge_writes_paper.npy")
        np.save(edge_data_writes_path, edge_data_writes)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                type: paper
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_paper_path}
              - domain: node
                type: paper
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                type: "author:writes:paper"
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_writes_path}
              - domain: edge
                type: "author:writes:paper"
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify feature data storage.
646
        feature_data = dataset.feature
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        assert len(feature_data) == 4

        # Verify node feature data.
        node_paper_feat = feature_data[("node", "paper", "feat")]
        assert isinstance(node_paper_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(
            node_paper_feat.read(), torch.tensor(node_data_paper)
        )
        node_paper_label = feature_data[("node", "paper", "label")]
        assert isinstance(node_paper_label, gb.TorchBasedFeatureStore)
        assert torch.equal(
            node_paper_label.read(), torch.tensor(node_data_label)
        )

        # Verify edge feature data.
        edge_writes_feat = feature_data[("edge", "author:writes:paper", "feat")]
        assert isinstance(edge_writes_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(
            edge_writes_feat.read(), torch.tensor(edge_data_writes)
        )
        edge_writes_label = feature_data[
            ("edge", "author:writes:paper", "label")
        ]
        assert isinstance(edge_writes_label, gb.TorchBasedFeatureStore)
        assert torch.equal(
            edge_writes_label.read(), torch.tensor(edge_data_label)
        )

        node_paper_feat = None
        node_paper_label = None
        edge_writes_feat = None
        edge_writes_label = None
        feature_data = None
        dataset = None


def test_OnDiskDataset_Feature_homograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_feat = np.random.rand(1000, 10)
        node_data_feat_path = os.path.join(test_dir, "node_data_feat.npy")
        np.save(node_data_feat_path, node_data_feat)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_feat = np.random.rand(1000, 10)
        edge_data_feat_path = os.path.join(test_dir, "edge_data_feat.npy")
        np.save(edge_data_feat_path, edge_data_feat)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        # ``type`` is not specified in the YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_feat_path}
              - domain: node
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_feat_path}
              - domain: edge
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify feature data storage.
734
        feature_data = dataset.feature
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        assert len(feature_data) == 4

        # Verify node feature data.
        node_feat = feature_data[("node", None, "feat")]
        assert isinstance(node_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(node_feat.read(), torch.tensor(node_data_feat))
        node_label = feature_data[("node", None, "label")]
        assert isinstance(node_label, gb.TorchBasedFeatureStore)
        assert torch.equal(node_label.read(), torch.tensor(node_data_label))

        # Verify edge feature data.
        edge_feat = feature_data[("edge", None, "feat")]
        assert isinstance(edge_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(edge_feat.read(), torch.tensor(edge_data_feat))
        edge_label = feature_data[("edge", None, "label")]
        assert isinstance(edge_label, gb.TorchBasedFeatureStore)
        assert torch.equal(edge_label.read(), torch.tensor(edge_data_label))

        node_feat = None
        node_label = None
        edge_feat = None
        edge_label = None
        feature_data = None
        dataset = None
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775


def test_OnDiskDataset_Graph_Exceptions():
    """Test exceptions in parsing graph topology."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Invalid graph type.
        yaml_content = """
            graph_topology:
              type: CSRSamplingGraph
              path: /path/to/graph
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        with pytest.raises(
            pydantic.ValidationError,
776
            match="1 validation error for OnDiskMetaData",
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
        ):
            _ = gb.OnDiskDataset(yaml_file)


def test_OnDiskDataset_Graph_homogeneous():
    """Test homogeneous graph topology."""
    csc_indptr, indices = gbt.random_homo_graph(1000, 10 * 1000)
    graph = gb.from_csc(csc_indptr, indices)

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
800
        graph2 = dataset.graph
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)

        assert graph.metadata is None and graph2.metadata is None
        assert (
            graph.node_type_offset is None and graph2.node_type_offset is None
        )
        assert graph.type_per_edge is None and graph2.type_per_edge is None


def test_OnDiskDataset_Graph_heterogeneous():
    """Test heterogeneous graph topology."""
    (
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
        metadata,
    ) = gbt.random_hetero_graph(1000, 10 * 1000, 3, 4)
    graph = gb.from_csc(
825
        csc_indptr, indices, node_type_offset, type_per_edge, None, metadata
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
    )

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
842
        graph2 = dataset.graph
843
844
845
846
847
848
849
850
851
852

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)
        assert torch.equal(graph.node_type_offset, graph2.node_type_offset)
        assert torch.equal(graph.type_per_edge, graph2.type_per_edge)
        assert graph.metadata.node_type_to_id == graph2.metadata.node_type_to_id
        assert graph.metadata.edge_type_to_id == graph2.metadata.edge_type_to_id
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887


def test_OnDiskDataset_Metadata():
    """Test metadata of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_classes = 10
        num_labels = 9
        yaml_content = f"""
            dataset_name: {dataset_name}
            num_classes: {num_classes}
            num_labels: {num_labels}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
        assert dataset.dataset_name == dataset_name
        assert dataset.num_classes == num_classes
        assert dataset.num_labels == num_labels

        # Only dataset_name is specified.
        yaml_content = f"""
            dataset_name: {dataset_name}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
        assert dataset.dataset_name == dataset_name
        assert dataset.num_classes is None
        assert dataset.num_labels is None
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965


def test_OnDiskDataset_preprocess_homogeneous():
    """Test preprocess of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10
        num_labels = 9

        # Generate random edges.
        nodes = np.repeat(np.arange(num_nodes), 5)
        neighbors = np.random.randint(0, num_nodes, size=(num_edges))
        edges = np.stack([nodes, neighbors], axis=1)
        # Wrtie into edges/edge.csv
        os.makedirs(os.path.join(test_dir, "edges/"), exist_ok=True)
        edges = pd.DataFrame(edges, columns=["src", "dst"])
        edges.to_csv(
            os.path.join(test_dir, "edges/edge.csv"),
            index=False,
            header=False,
        )

        # Generate random graph edge-feats.
        edge_feats = np.random.rand(num_edges, 5)
        os.makedirs(os.path.join(test_dir, "data/"), exist_ok=True)
        np.save(os.path.join(test_dir, "data/edge-feat.npy"), edge_feats)

        # Generate random node-feats.
        node_feats = np.random.rand(num_nodes, 10)
        np.save(os.path.join(test_dir, "data/node-feat.npy"), node_feats)

        # Generate train/test/valid set.
        os.makedirs(os.path.join(test_dir, "set/"), exist_ok=True)
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "set/train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "set/validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "set/test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            dataset_name: {dataset_name}
            num_classes: {num_classes}
            num_labels: {num_labels}
            graph: # graph structure and required attributes.
                nodes:
                    - num: {num_nodes}
                edges:
                    - format: csv
                      path: edges/edge.csv
                feature_data:
                    - domain: edge
                      type: null
                      name: feat
                      format: numpy
                      in_memory: true
                      path: data/edge-feat.npy
            feature_data:
                - domain: node
                  type: null
                  name: feat
                  format: numpy
                  in_memory: false
                  path: data/node-feat.npy
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
            train_set:
                - type_name: null
                  data:
                    - format: numpy
                      path: set/train.npy
            validation_set:
                - type_name: null
                  data:
                    - format: numpy
                      path: set/validation.npy
            test_set:
                - type_name: null
                  data:
                    - format: numpy
                      path: set/test.npy
981
982
983
984
985
986
987
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        output_file = gb.ondisk_dataset.preprocess_ondisk_dataset(yaml_file)

        with open(output_file, "rb") as f:
988
            processed_dataset = yaml.load(f, Loader=yaml.Loader)
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

        assert processed_dataset["dataset_name"] == dataset_name
        assert processed_dataset["num_classes"] == num_classes
        assert processed_dataset["num_labels"] == num_labels
        assert "graph" not in processed_dataset
        assert "graph_topology" in processed_dataset

        csc_sampling_graph = gb.csc_sampling_graph.load_csc_sampling_graph(
            os.path.join(test_dir, processed_dataset["graph_topology"]["path"])
        )
        assert csc_sampling_graph.num_nodes == num_nodes
        assert csc_sampling_graph.num_edges == num_edges

        num_samples = 100
        fanout = 1
        subgraph = csc_sampling_graph.sample_neighbors(
            torch.arange(num_samples),
            torch.tensor([fanout]),
        )
        assert len(list(subgraph.node_pairs.values())[0][0]) <= num_samples