test_ondisk_dataset.py 38.4 KB
Newer Older
1
import os
2
import re
3
4
import tempfile

5
6
import gb_test_utils as gbt

7
import numpy as np
8
import pandas as pd
9
10
11

import pydantic
import pytest
12
import torch
13
import yaml
14
15
16
17
18
19
from dgl import graphbolt as gb


def test_OnDiskDataset_TVTSet_exceptions():
    """Test excpetions thrown when parsing TVTSet."""
    with tempfile.TemporaryDirectory() as test_dir:
20
21
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
22
23
24

        # Case 1: ``format`` is invalid.
        yaml_content = """
25
26
27
28
29
        train_set:
          - type: paper
            data:
              - format: torch_invalid
                path: set/paper-train.pt
30
        """
31
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
32
33
34
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(pydantic.ValidationError):
35
            _ = gb.OnDiskDataset(test_dir)
36

37
38
        # Case 2: ``type`` is not specified while multiple TVT sets are
        # specified.
39
        yaml_content = """
40
41
42
43
44
45
46
47
48
            train_set:
              - type: null
                data:
                  - format: numpy
                    path: set/train.npy
              - type: null
                data:
                  - format: numpy
                    path: set/train.npy
49
50
51
52
53
        """
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(
            AssertionError,
54
            match=r"Only one TVT set is allowed if type is not specified.",
55
        ):
56
            _ = gb.OnDiskDataset(test_dir)
57
58
59
60
61
62


def test_OnDiskDataset_TVTSet_ItemSet_id_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
63
64
        train_ids_path = os.path.join(test_dir, "train_ids.npy")
        np.save(train_ids_path, train_ids)
65
        train_labels = np.random.randint(0, 10, size=1000)
66
67
        train_labels_path = os.path.join(test_dir, "train_labels.npy")
        np.save(train_labels_path, train_labels)
68
69

        validation_ids = np.arange(1000, 2000)
70
71
        validation_ids_path = os.path.join(test_dir, "validation_ids.npy")
        np.save(validation_ids_path, validation_ids)
72
        validation_labels = np.random.randint(0, 10, size=1000)
73
74
        validation_labels_path = os.path.join(test_dir, "validation_labels.npy")
        np.save(validation_labels_path, validation_labels)
75
76

        test_ids = np.arange(2000, 3000)
77
78
        test_ids_path = os.path.join(test_dir, "test_ids.npy")
        np.save(test_ids_path, test_ids)
79
        test_labels = np.random.randint(0, 10, size=1000)
80
81
        test_labels_path = os.path.join(test_dir, "test_labels.npy")
        np.save(test_labels_path, test_labels)
82
83
84

        # Case 1:
        #   all TVT sets are specified.
85
        #   ``type`` is not specified or specified as ``null``.
86
87
        #   ``in_memory`` could be ``true`` and ``false``.
        yaml_content = f"""
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
            train_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_ids_path}
                  - format: numpy
                    in_memory: true
                    path: {train_labels_path}
            validation_set:
              - data:
                  - format: numpy
                    in_memory: true
                    path: {validation_ids_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_labels_path}
            test_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {test_ids_path}
                  - format: numpy
                    in_memory: true
                    path: {test_labels_path}
114
        """
115
116
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
117
118
119
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

120
        dataset = gb.OnDiskDataset(test_dir)
121
122

        # Verify train set.
123
124
125
126
127
128
129
        train_set = dataset.train_set
        assert len(train_set) == 1000
        assert isinstance(train_set, gb.ItemSet)
        for i, (id, label) in enumerate(train_set):
            assert id == train_ids[i]
            assert label == train_labels[i]
        train_set = None
130
131

        # Verify validation set.
132
133
134
135
136
137
138
        validation_set = dataset.validation_set
        assert len(validation_set) == 1000
        assert isinstance(validation_set, gb.ItemSet)
        for i, (id, label) in enumerate(validation_set):
            assert id == validation_ids[i]
            assert label == validation_labels[i]
        validation_set = None
139
140

        # Verify test set.
141
142
143
144
145
146
147
        test_set = dataset.test_set
        assert len(test_set) == 1000
        assert isinstance(test_set, gb.ItemSet)
        for i, (id, label) in enumerate(test_set):
            assert id == test_ids[i]
            assert label == test_labels[i]
        test_set = None
148
149
150
151
        dataset = None

        # Case 2: Some TVT sets are None.
        yaml_content = f"""
152
153
154
155
156
            train_set:
              - type: null
                data:
                  - format: numpy
                    path: {train_ids_path}
157
        """
158
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
159
160
161
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

162
        dataset = gb.OnDiskDataset(test_dir)
163
164
165
        assert dataset.train_set is not None
        assert dataset.validation_set is None
        assert dataset.test_set is None
166
167
168
169
170
171
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSet_node_pair_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
172
173
174
175
176
177
        train_src = np.arange(1000)
        train_src_path = os.path.join(test_dir, "train_src.npy")
        np.save(train_src_path, train_src)
        train_dst = np.arange(1000, 2000)
        train_dst_path = os.path.join(test_dir, "train_dst.npy")
        np.save(train_dst_path, train_dst)
178
        train_labels = np.random.randint(0, 10, size=1000)
179
180
181
182
183
184
185
186
187
        train_labels_path = os.path.join(test_dir, "train_labels.npy")
        np.save(train_labels_path, train_labels)

        validation_src = np.arange(1000, 2000)
        validation_src_path = os.path.join(test_dir, "validation_src.npy")
        np.save(validation_src_path, validation_src)
        validation_dst = np.arange(2000, 3000)
        validation_dst_path = os.path.join(test_dir, "validation_dst.npy")
        np.save(validation_dst_path, validation_dst)
188
        validation_labels = np.random.randint(0, 10, size=1000)
189
190
191
192
193
194
195
196
197
        validation_labels_path = os.path.join(test_dir, "validation_labels.npy")
        np.save(validation_labels_path, validation_labels)

        test_src = np.arange(2000, 3000)
        test_src_path = os.path.join(test_dir, "test_src.npy")
        np.save(test_src_path, test_src)
        test_dst = np.arange(3000, 4000)
        test_dst_path = os.path.join(test_dir, "test_dst.npy")
        np.save(test_dst_path, test_dst)
198
        test_labels = np.random.randint(0, 10, size=1000)
199
200
        test_labels_path = os.path.join(test_dir, "test_labels.npy")
        np.save(test_labels_path, test_labels)
201
202

        yaml_content = f"""
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
            train_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_src_path}
                  - format: numpy
                    in_memory: true
                    path: {train_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {train_labels_path}
            validation_set:
              - data:
                  - format: numpy
                    in_memory: true
                    path: {validation_src_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_labels_path}
            test_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {test_src_path}
                  - format: numpy
                    in_memory: true
                    path: {test_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {test_labels_path}
238
        """
239
240
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
241
242
243
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

244
        dataset = gb.OnDiskDataset(test_dir)
245
246

        # Verify train set.
247
248
249
250
251
252
253
254
        train_set = dataset.train_set
        assert len(train_set) == 1000
        assert isinstance(train_set, gb.ItemSet)
        for i, (src, dst, label) in enumerate(train_set):
            assert src == train_src[i]
            assert dst == train_dst[i]
            assert label == train_labels[i]
        train_set = None
255
256

        # Verify validation set.
257
258
259
260
261
262
263
264
        validation_set = dataset.validation_set
        assert len(validation_set) == 1000
        assert isinstance(validation_set, gb.ItemSet)
        for i, (src, dst, label) in enumerate(validation_set):
            assert src == validation_src[i]
            assert dst == validation_dst[i]
            assert label == validation_labels[i]
        validation_set = None
265
266

        # Verify test set.
267
268
269
270
271
272
273
274
        test_set = dataset.test_set
        assert len(test_set) == 1000
        assert isinstance(test_set, gb.ItemSet)
        for i, (src, dst, label) in enumerate(test_set):
            assert src == test_src[i]
            assert dst == test_dst[i]
            assert label == test_labels[i]
        test_set = None
275
276
277
        dataset = None


278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def test_OnDiskDataset_TVTSet_ItemSet_node_pair_negs():
    """Test TVTSet which returns ItemSet with node pairs and negative ones."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_src = np.arange(1000)
        train_src_path = os.path.join(test_dir, "train_src.npy")
        np.save(train_src_path, train_src)
        train_dst = np.arange(1000, 2000)
        train_dst_path = os.path.join(test_dir, "train_dst.npy")
        np.save(train_dst_path, train_dst)
        train_neg_dst = np.random.choice(1000 * 10, size=1000 * 10).reshape(
            1000, 10
        )
        train_neg_dst_path = os.path.join(test_dir, "train_neg_dst.npy")
        np.save(train_neg_dst_path, train_neg_dst)

        validation_src = np.arange(1000, 2000)
        validation_src_path = os.path.join(test_dir, "validation_src.npy")
        np.save(validation_src_path, validation_src)
        validation_dst = np.arange(2000, 3000)
        validation_dst_path = os.path.join(test_dir, "validation_dst.npy")
        np.save(validation_dst_path, validation_dst)
        validation_neg_dst = train_neg_dst + 1
        validation_neg_dst_path = os.path.join(
            test_dir, "validation_neg_dst.npy"
        )
        np.save(validation_neg_dst_path, validation_neg_dst)

        test_src = np.arange(2000, 3000)
        test_src_path = os.path.join(test_dir, "test_src.npy")
        np.save(test_src_path, test_src)
        test_dst = np.arange(3000, 4000)
        test_dst_path = os.path.join(test_dir, "test_dst.npy")
        np.save(test_dst_path, test_dst)
        test_neg_dst = train_neg_dst + 2
        test_neg_dst_path = os.path.join(test_dir, "test_neg_dst.npy")
        np.save(test_neg_dst_path, test_neg_dst)

        yaml_content = f"""
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
            train_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_src_path}
                  - format: numpy
                    in_memory: true
                    path: {train_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {train_neg_dst_path}
            validation_set:
              - data:
                  - format: numpy
                    in_memory: true
                    path: {validation_src_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {validation_neg_dst_path}
            test_set:
              - type: null
                data:
                  - format: numpy
                    in_memory: true
                    path: {test_src_path}
                  - format: numpy
                    in_memory: true
                    path: {test_dst_path}
                  - format: numpy
                    in_memory: true
                    path: {test_neg_dst_path}
351
        """
352
353
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
354
355
356
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

357
        dataset = gb.OnDiskDataset(test_dir)
358
359

        # Verify train set.
360
361
362
363
364
365
366
367
        train_set = dataset.train_set
        assert len(train_set) == 1000
        assert isinstance(train_set, gb.ItemSet)
        for i, (src, dst, negs) in enumerate(train_set):
            assert src == train_src[i]
            assert dst == train_dst[i]
            assert torch.equal(negs, torch.from_numpy(train_neg_dst[i]))
        train_set = None
368
369

        # Verify validation set.
370
371
372
373
374
375
376
377
        validation_set = dataset.validation_set
        assert len(validation_set) == 1000
        assert isinstance(validation_set, gb.ItemSet)
        for i, (src, dst, negs) in enumerate(validation_set):
            assert src == validation_src[i]
            assert dst == validation_dst[i]
            assert torch.equal(negs, torch.from_numpy(validation_neg_dst[i]))
        validation_set = None
378
379

        # Verify test set.
380
381
382
383
384
385
386
387
        test_set = dataset.test_set
        assert len(test_set) == 1000
        assert isinstance(test_set, gb.ItemSet)
        for i, (src, dst, negs) in enumerate(test_set):
            assert src == test_src[i]
            assert dst == test_dst[i]
            assert torch.equal(negs, torch.from_numpy(test_neg_dst[i]))
        test_set = None
388
389
390
        dataset = None


391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
def test_OnDiskDataset_TVTSet_ItemSetDict_id_label():
    """Test TVTSet which returns ItemSetDict with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_ids, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_ids = np.arange(1000, 2000)
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_ids, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_ids = np.arange(2000, 3000)
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_ids, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
            train_set:
              - type: paper
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_path}
              - type: author
                data:
                  - format: numpy
                    path: {train_path}
            validation_set:
              - type: paper
                data:
                  - format: numpy
                    path: {validation_path}
              - type: author
                data:
                  - format: numpy
                    path: {validation_path}
            test_set:
              - type: paper
                data:
                  - format: numpy
                    in_memory: false
                    path: {test_path}
              - type: author
                data:
                  - format: numpy
                    path: {test_path}
442
        """
443
444
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
445
446
447
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

448
        dataset = gb.OnDiskDataset(test_dir)
449
450

        # Verify train set.
451
452
453
454
455
456
457
458
459
460
461
462
        train_set = dataset.train_set
        assert len(train_set) == 2000
        assert isinstance(train_set, gb.ItemSetDict)
        for i, item in enumerate(train_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            id, label = item[key]
            assert id == train_ids[i % 1000]
            assert label == train_labels[i % 1000]
        train_set = None
463
464

        # Verify validation set.
465
466
467
468
469
470
471
472
473
474
475
476
        validation_set = dataset.validation_set
        assert len(validation_set) == 2000
        assert isinstance(validation_set, gb.ItemSetDict)
        for i, item in enumerate(validation_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            id, label = item[key]
            assert id == validation_ids[i % 1000]
            assert label == validation_labels[i % 1000]
        validation_set = None
477
478

        # Verify test set.
479
480
481
482
483
484
485
486
487
488
489
490
        test_set = dataset.test_set
        assert len(test_set) == 2000
        assert isinstance(test_set, gb.ItemSetDict)
        for i, item in enumerate(test_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            id, label = item[key]
            assert id == test_ids[i % 1000]
            assert label == test_labels[i % 1000]
        test_set = None
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSetDict_node_pair_label():
    """Test TVTSet which returns ItemSetDict with node pairs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
            train_set:
              - type: paper
                data:
                  - format: numpy
                    in_memory: true
                    path: {train_path}
              - type: author
                data:
                  - format: numpy
                    path: {train_path}
            validation_set:
              - type: paper
                data:
                  - format: numpy
                    path: {validation_path}
              - type: author
                data:
                  - format: numpy
                    path: {validation_path}
            test_set:
              - type: paper
                data:
                  - format: numpy
                    in_memory: false
                    path: {test_path}
              - type: author
                data:
                  - format: numpy
                    path: {test_path}
545
        """
546
547
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
548
549
550
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

551
        dataset = gb.OnDiskDataset(test_dir)
552
553

        # Verify train set.
554
555
556
557
558
559
560
561
562
563
564
565
566
        train_set = dataset.train_set
        assert len(train_set) == 2000
        assert isinstance(train_set, gb.ItemSetDict)
        for i, item in enumerate(train_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            src, dst, label = item[key]
            assert src == train_pairs[0][i % 1000]
            assert dst == train_pairs[1][i % 1000]
            assert label == train_labels[i % 1000]
        train_set = None
567
568

        # Verify validation set.
569
570
571
572
573
574
575
576
577
578
579
580
581
        validation_set = dataset.validation_set
        assert len(validation_set) == 2000
        assert isinstance(validation_set, gb.ItemSetDict)
        for i, item in enumerate(validation_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            src, dst, label = item[key]
            assert src == validation_pairs[0][i % 1000]
            assert dst == validation_pairs[1][i % 1000]
            assert label == validation_labels[i % 1000]
        validation_set = None
582
583

        # Verify test set.
584
585
586
587
588
589
590
591
592
593
594
595
596
        test_set = dataset.test_set
        assert len(test_set) == 2000
        assert isinstance(test_set, gb.ItemSetDict)
        for i, item in enumerate(test_set):
            assert isinstance(item, dict)
            assert len(item) == 1
            key = list(item.keys())[0]
            assert key in ["paper", "author"]
            src, dst, label = item[key]
            assert src == test_pairs[0][i % 1000]
            assert dst == test_pairs[1][i % 1000]
            assert label == test_labels[i % 1000]
        test_set = None
597
        dataset = None
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646


def test_OnDiskDataset_Feature_heterograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_paper = np.random.rand(1000, 10)
        node_data_paper_path = os.path.join(test_dir, "node_data_paper.npy")
        np.save(node_data_paper_path, node_data_paper)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_writes = np.random.rand(1000, 10)
        edge_data_writes_path = os.path.join(test_dir, "edge_writes_paper.npy")
        np.save(edge_data_writes_path, edge_data_writes)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                type: paper
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_paper_path}
              - domain: node
                type: paper
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                type: "author:writes:paper"
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_writes_path}
              - domain: edge
                type: "author:writes:paper"
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
647
648
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
649
650
651
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

652
        dataset = gb.OnDiskDataset(test_dir)
653
654

        # Verify feature data storage.
655
        feature_data = dataset.feature
656
657
658
659
        assert len(feature_data) == 4

        # Verify node feature data.
        assert torch.equal(
660
661
            feature_data.read("node", "paper", "feat"),
            torch.tensor(node_data_paper),
662
663
        )
        assert torch.equal(
664
665
            feature_data.read("node", "paper", "label"),
            torch.tensor(node_data_label),
666
667
668
669
        )

        # Verify edge feature data.
        assert torch.equal(
670
671
            feature_data.read("edge", "author:writes:paper", "feat"),
            torch.tensor(edge_data_writes),
672
673
        )
        assert torch.equal(
674
675
            feature_data.read("edge", "author:writes:paper", "label"),
            torch.tensor(edge_data_label),
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
        )

        feature_data = None
        dataset = None


def test_OnDiskDataset_Feature_homograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_feat = np.random.rand(1000, 10)
        node_data_feat_path = os.path.join(test_dir, "node_data_feat.npy")
        np.save(node_data_feat_path, node_data_feat)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_feat = np.random.rand(1000, 10)
        edge_data_feat_path = os.path.join(test_dir, "edge_data_feat.npy")
        np.save(edge_data_feat_path, edge_data_feat)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        # ``type`` is not specified in the YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_feat_path}
              - domain: node
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_feat_path}
              - domain: edge
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
726
727
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
728
729
730
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

731
        dataset = gb.OnDiskDataset(test_dir)
732
733

        # Verify feature data storage.
734
        feature_data = dataset.feature
735
736
737
        assert len(feature_data) == 4

        # Verify node feature data.
738
739
740
741
742
743
744
745
        assert torch.equal(
            feature_data.read("node", None, "feat"),
            torch.tensor(node_data_feat),
        )
        assert torch.equal(
            feature_data.read("node", None, "label"),
            torch.tensor(node_data_label),
        )
746
747

        # Verify edge feature data.
748
749
750
751
752
753
754
755
756
        assert torch.equal(
            feature_data.read("edge", None, "feat"),
            torch.tensor(edge_data_feat),
        )
        assert torch.equal(
            feature_data.read("edge", None, "label"),
            torch.tensor(edge_data_label),
        )

757
758
        feature_data = None
        dataset = None
759
760
761
762
763
764
765
766
767
768
769


def test_OnDiskDataset_Graph_Exceptions():
    """Test exceptions in parsing graph topology."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Invalid graph type.
        yaml_content = """
            graph_topology:
              type: CSRSamplingGraph
              path: /path/to/graph
        """
770
771
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
772
773
774
775
776
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        with pytest.raises(
            pydantic.ValidationError,
777
            match="1 validation error for OnDiskMetaData",
778
        ):
779
            _ = gb.OnDiskDataset(test_dir)
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795


def test_OnDiskDataset_Graph_homogeneous():
    """Test homogeneous graph topology."""
    csc_indptr, indices = gbt.random_homo_graph(1000, 10 * 1000)
    graph = gb.from_csc(csc_indptr, indices)

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
796
797
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
798
799
800
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

801
        dataset = gb.OnDiskDataset(test_dir)
802
        graph2 = dataset.graph
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)

        assert graph.metadata is None and graph2.metadata is None
        assert (
            graph.node_type_offset is None and graph2.node_type_offset is None
        )
        assert graph.type_per_edge is None and graph2.type_per_edge is None


def test_OnDiskDataset_Graph_heterogeneous():
    """Test heterogeneous graph topology."""
    (
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
        metadata,
    ) = gbt.random_hetero_graph(1000, 10 * 1000, 3, 4)
    graph = gb.from_csc(
827
        csc_indptr, indices, node_type_offset, type_per_edge, None, metadata
828
829
830
831
832
833
834
835
836
837
838
    )

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
839
840
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
841
842
843
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

844
        dataset = gb.OnDiskDataset(test_dir)
845
        graph2 = dataset.graph
846
847
848
849
850
851
852
853
854
855

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)
        assert torch.equal(graph.node_type_offset, graph2.node_type_offset)
        assert torch.equal(graph.type_per_edge, graph2.type_per_edge)
        assert graph.metadata.node_type_to_id == graph2.metadata.node_type_to_id
        assert graph.metadata.edge_type_to_id == graph2.metadata.edge_type_to_id
856
857
858
859
860
861
862
863
864
865
866
867
868
869


def test_OnDiskDataset_Metadata():
    """Test metadata of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_classes = 10
        num_labels = 9
        yaml_content = f"""
            dataset_name: {dataset_name}
            num_classes: {num_classes}
            num_labels: {num_labels}
        """
870
871
        os.makedirs(os.path.join(test_dir, "preprocessed"), exist_ok=True)
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
872
873
874
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

875
        dataset = gb.OnDiskDataset(test_dir)
876
877
878
879
880
881
882
883
        assert dataset.dataset_name == dataset_name
        assert dataset.num_classes == num_classes
        assert dataset.num_labels == num_labels

        # Only dataset_name is specified.
        yaml_content = f"""
            dataset_name: {dataset_name}
        """
884
        yaml_file = os.path.join(test_dir, "preprocessed/metadata.yaml")
885
886
887
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

888
        dataset = gb.OnDiskDataset(test_dir)
889
890
891
        assert dataset.dataset_name == dataset_name
        assert dataset.num_classes is None
        assert dataset.num_labels is None
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969


def test_OnDiskDataset_preprocess_homogeneous():
    """Test preprocess of OnDiskDataset."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_nodes = 4000
        num_edges = 20000
        num_classes = 10
        num_labels = 9

        # Generate random edges.
        nodes = np.repeat(np.arange(num_nodes), 5)
        neighbors = np.random.randint(0, num_nodes, size=(num_edges))
        edges = np.stack([nodes, neighbors], axis=1)
        # Wrtie into edges/edge.csv
        os.makedirs(os.path.join(test_dir, "edges/"), exist_ok=True)
        edges = pd.DataFrame(edges, columns=["src", "dst"])
        edges.to_csv(
            os.path.join(test_dir, "edges/edge.csv"),
            index=False,
            header=False,
        )

        # Generate random graph edge-feats.
        edge_feats = np.random.rand(num_edges, 5)
        os.makedirs(os.path.join(test_dir, "data/"), exist_ok=True)
        np.save(os.path.join(test_dir, "data/edge-feat.npy"), edge_feats)

        # Generate random node-feats.
        node_feats = np.random.rand(num_nodes, 10)
        np.save(os.path.join(test_dir, "data/node-feat.npy"), node_feats)

        # Generate train/test/valid set.
        os.makedirs(os.path.join(test_dir, "set/"), exist_ok=True)
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "set/train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "set/validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "set/test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            dataset_name: {dataset_name}
            num_classes: {num_classes}
            num_labels: {num_labels}
            graph: # graph structure and required attributes.
                nodes:
                    - num: {num_nodes}
                edges:
                    - format: csv
                      path: edges/edge.csv
                feature_data:
                    - domain: edge
                      type: null
                      name: feat
                      format: numpy
                      in_memory: true
                      path: data/edge-feat.npy
            feature_data:
                - domain: node
                  type: null
                  name: feat
                  format: numpy
                  in_memory: false
                  path: data/node-feat.npy
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
            train_set:
                - type_name: null
                  data:
                    - format: numpy
                      path: set/train.npy
            validation_set:
                - type_name: null
                  data:
                    - format: numpy
                      path: set/validation.npy
            test_set:
                - type_name: null
                  data:
                    - format: numpy
                      path: set/test.npy
985
        """
986
        yaml_file = os.path.join(test_dir, "metadata.yaml")
987
988
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
989
        output_file = gb.ondisk_dataset.preprocess_ondisk_dataset(test_dir)
990
991

        with open(output_file, "rb") as f:
992
            processed_dataset = yaml.load(f, Loader=yaml.Loader)
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

        assert processed_dataset["dataset_name"] == dataset_name
        assert processed_dataset["num_classes"] == num_classes
        assert processed_dataset["num_labels"] == num_labels
        assert "graph" not in processed_dataset
        assert "graph_topology" in processed_dataset

        csc_sampling_graph = gb.csc_sampling_graph.load_csc_sampling_graph(
            os.path.join(test_dir, processed_dataset["graph_topology"]["path"])
        )
        assert csc_sampling_graph.num_nodes == num_nodes
        assert csc_sampling_graph.num_edges == num_edges

        num_samples = 100
        fanout = 1
        subgraph = csc_sampling_graph.sample_neighbors(
            torch.arange(num_samples),
            torch.tensor([fanout]),
        )
        assert len(list(subgraph.node_pairs.values())[0][0]) <= num_samples
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055


def test_OnDiskDataset_preprocess_path():
    """Test if the preprocess function can catch the path error."""
    with tempfile.TemporaryDirectory() as test_dir:
        # All metadata fields are specified.
        dataset_name = "graphbolt_test"
        num_classes = 10
        num_labels = 9

        yaml_content = f"""
            dataset_name: {dataset_name}
            num_classes: {num_classes}
            num_labels: {num_labels}
        """
        yaml_file = os.path.join(test_dir, "metadata.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        # Case1. Test the passed in is the yaml file path.
        with pytest.raises(
            RuntimeError,
            match="The dataset must be a directory. "
            rf"But got {re.escape(yaml_file)}",
        ):
            _ = gb.OnDiskDataset(yaml_file)

        # Case2. Test the passed in is a fake directory.
        fake_dir = os.path.join(test_dir, "fake_dir")
        with pytest.raises(
            RuntimeError,
            match=rf"Invalid dataset path: {re.escape(fake_dir)}",
        ):
            _ = gb.OnDiskDataset(fake_dir)

        # Case3. Test the passed in is the dataset directory.
        # But the metadata.yaml is not in the directory.
        os.makedirs(os.path.join(test_dir, "fake_dir"), exist_ok=True)
        with pytest.raises(
            RuntimeError,
            match=r"metadata.yaml does not exist.",
        ):
            _ = gb.OnDiskDataset(fake_dir)