test_ondisk_dataset.py 26.1 KB
Newer Older
1
2
3
import os
import tempfile

4
5
import gb_test_utils as gbt

6
7
8
9
import numpy as np

import pydantic
import pytest
10
import torch
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
from dgl import graphbolt as gb


def test_OnDiskDataset_TVTSet_exceptions():
    """Test excpetions thrown when parsing TVTSet."""
    with tempfile.TemporaryDirectory() as test_dir:
        yaml_file = os.path.join(test_dir, "test.yaml")

        # Case 1: ``format`` is invalid.
        yaml_content = """
        train_sets:
          - - type_name: paper
              format: torch_invalid
              path: set/paper-train.pt
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(pydantic.ValidationError):
            _ = gb.OnDiskDataset(yaml_file)

        # Case 2: ``type_name`` is not specified while multiple TVT sets are specified.
        yaml_content = """
            train_sets:
              - - type_name: null
                  format: numpy
                  path: set/train.npy
                - type_name: null
                  format: numpy
                  path: set/train.npy
        """
        with open(yaml_file, "w") as f:
            f.write(yaml_content)
        with pytest.raises(
            AssertionError,
            match=r"Only one TVT set is allowed if type_name is not specified.",
        ):
            _ = gb.OnDiskDataset(yaml_file)


def test_OnDiskDataset_TVTSet_ItemSet_id_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_ids, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_ids = np.arange(1000, 2000)
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_ids, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_ids = np.arange(2000, 3000)
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_ids, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        # Case 1:
        #   all TVT sets are specified.
        #   ``type_name`` is not specified or specified as ``null``.
        #   ``in_memory`` could be ``true`` and ``false``.
        yaml_content = f"""
            train_sets:
              - - type_name: null
                  format: numpy
                  in_memory: true
                  path: {train_path}
              - - type_name: null
                  format: numpy
                  path: {train_path}
            validation_sets:
              - - format: numpy
                  path: {validation_path}
              - - type_name: null
                  format: numpy
                  path: {validation_path}
            test_sets:
              - - type_name: null
                  format: numpy
                  in_memory: false
                  path: {test_path}
              - - type_name: null
                  format: numpy
                  path: {test_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
        train_sets = dataset.train_sets()
        assert len(train_sets) == 2
        for train_set in train_sets:
            assert len(train_set) == 1000
            assert isinstance(train_set, gb.ItemSet)
            for i, (id, label) in enumerate(train_set):
                assert id == train_ids[i]
                assert label == train_labels[i]
        train_sets = None

        # Verify validation set.
        validation_sets = dataset.validation_sets()
        assert len(validation_sets) == 2
        for validation_set in validation_sets:
            assert len(validation_set) == 1000
            assert isinstance(validation_set, gb.ItemSet)
            for i, (id, label) in enumerate(validation_set):
                assert id == validation_ids[i]
                assert label == validation_labels[i]
        validation_sets = None

        # Verify test set.
        test_sets = dataset.test_sets()
        assert len(test_sets) == 2
        for test_set in test_sets:
            assert len(test_set) == 1000
            assert isinstance(test_set, gb.ItemSet)
            for i, (id, label) in enumerate(test_set):
                assert id == test_ids[i]
                assert label == test_labels[i]
        test_sets = None
        dataset = None

        # Case 2: Some TVT sets are None.
        yaml_content = f"""
            train_sets:
              - - type_name: null
                  format: numpy
                  path: {train_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
        assert dataset.train_sets() is not None
        assert dataset.validation_sets() is None
        assert dataset.test_sets() is None
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSet_node_pair_label():
    """Test TVTSet which returns ItemSet with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            train_sets:
              - - type_name: null
                  format: numpy
                  in_memory: true
                  path: {train_path}
              - - type_name: null
                  format: numpy
                  path: {train_path}
            validation_sets:
              - - format: numpy
                  path: {validation_path}
              - - type_name: null
                  format: numpy
                  path: {validation_path}
            test_sets:
              - - type_name: null
                  format: numpy
                  in_memory: false
                  path: {test_path}
              - - type_name: null
                  format: numpy
                  path: {test_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
        train_sets = dataset.train_sets()
        assert len(train_sets) == 2
        for train_set in train_sets:
            assert len(train_set) == 1000
            assert isinstance(train_set, gb.ItemSet)
            for i, (src, dst, label) in enumerate(train_set):
                assert src == train_pairs[0][i]
                assert dst == train_pairs[1][i]
                assert label == train_labels[i]
        train_sets = None

        # Verify validation set.
        validation_sets = dataset.validation_sets()
        assert len(validation_sets) == 2
        for validation_set in validation_sets:
            assert len(validation_set) == 1000
            assert isinstance(validation_set, gb.ItemSet)
            for i, (src, dst, label) in enumerate(validation_set):
                assert src == validation_pairs[0][i]
                assert dst == validation_pairs[1][i]
                assert label == validation_labels[i]
        validation_sets = None

        # Verify test set.
        test_sets = dataset.test_sets()
        assert len(test_sets) == 2
        for test_set in test_sets:
            assert len(test_set) == 1000
            assert isinstance(test_set, gb.ItemSet)
            for i, (src, dst, label) in enumerate(test_set):
                assert src == test_pairs[0][i]
                assert dst == test_pairs[1][i]
                assert label == test_labels[i]
        test_sets = None
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSetDict_id_label():
    """Test TVTSet which returns ItemSetDict with IDs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_ids = np.arange(1000)
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_ids, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_ids = np.arange(1000, 2000)
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_ids, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_ids = np.arange(2000, 3000)
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_ids, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            train_sets:
              - - type_name: paper
                  format: numpy
                  in_memory: true
                  path: {train_path}
              - - type_name: author
                  format: numpy
                  path: {train_path}
            validation_sets:
              - - type_name: paper
                  format: numpy
                  path: {validation_path}
              - - type_name: author
                  format: numpy
                  path: {validation_path}
            test_sets:
              - - type_name: paper
                  format: numpy
                  in_memory: false
                  path: {test_path}
              - - type_name: author
                  format: numpy
                  path: {test_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
        train_sets = dataset.train_sets()
        assert len(train_sets) == 2
        for train_set in train_sets:
            assert len(train_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(train_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                id, label = item[key]
                assert id == train_ids[i]
                assert label == train_labels[i]
        train_sets = None

        # Verify validation set.
        validation_sets = dataset.validation_sets()
        assert len(validation_sets) == 2
        for validation_set in validation_sets:
            assert len(validation_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(validation_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                id, label = item[key]
                assert id == validation_ids[i]
                assert label == validation_labels[i]
        validation_sets = None

        # Verify test set.
        test_sets = dataset.test_sets()
        assert len(test_sets) == 2
        for test_set in test_sets:
            assert len(test_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(test_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                id, label = item[key]
                assert id == test_ids[i]
                assert label == test_labels[i]
        test_sets = None
        dataset = None


def test_OnDiskDataset_TVTSet_ItemSetDict_node_pair_label():
    """Test TVTSet which returns ItemSetDict with node pairs and labels."""
    with tempfile.TemporaryDirectory() as test_dir:
        train_pairs = (np.arange(1000), np.arange(1000, 2000))
        train_labels = np.random.randint(0, 10, size=1000)
        train_data = np.vstack([train_pairs, train_labels]).T
        train_path = os.path.join(test_dir, "train.npy")
        np.save(train_path, train_data)

        validation_pairs = (np.arange(1000, 2000), np.arange(2000, 3000))
        validation_labels = np.random.randint(0, 10, size=1000)
        validation_data = np.vstack([validation_pairs, validation_labels]).T
        validation_path = os.path.join(test_dir, "validation.npy")
        np.save(validation_path, validation_data)

        test_pairs = (np.arange(2000, 3000), np.arange(3000, 4000))
        test_labels = np.random.randint(0, 10, size=1000)
        test_data = np.vstack([test_pairs, test_labels]).T
        test_path = os.path.join(test_dir, "test.npy")
        np.save(test_path, test_data)

        yaml_content = f"""
            train_sets:
              - - type_name: paper
                  format: numpy
                  in_memory: true
                  path: {train_path}
              - - type_name: author
                  format: numpy
                  path: {train_path}
            validation_sets:
              - - type_name: paper
                  format: numpy
                  path: {validation_path}
              - - type_name: author
                  format: numpy
                  path: {validation_path}
            test_sets:
              - - type_name: paper
                  format: numpy
                  in_memory: false
                  path: {test_path}
              - - type_name: author
                  format: numpy
                  path: {test_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify train set.
        train_sets = dataset.train_sets()
        assert len(train_sets) == 2
        for train_set in train_sets:
            assert len(train_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(train_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                src, dst, label = item[key]
                assert src == train_pairs[0][i]
                assert dst == train_pairs[1][i]
                assert label == train_labels[i]
        train_sets = None

        # Verify validation set.
        validation_sets = dataset.validation_sets()
        assert len(validation_sets) == 2
        for validation_set in validation_sets:
            assert len(validation_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(validation_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                src, dst, label = item[key]
                assert src == validation_pairs[0][i]
                assert dst == validation_pairs[1][i]
                assert label == validation_labels[i]
        validation_sets = None

        # Verify test set.
        test_sets = dataset.test_sets()
        assert len(test_sets) == 2
        for test_set in test_sets:
            assert len(test_set) == 1000
            assert isinstance(train_set, gb.ItemSetDict)
            for i, item in enumerate(test_set):
                assert isinstance(item, dict)
                assert len(item) == 1
                key = list(item.keys())[0]
                assert key in ["paper", "author"]
                src, dst, label = item[key]
                assert src == test_pairs[0][i]
                assert dst == test_pairs[1][i]
                assert label == test_labels[i]
        test_sets = None
        dataset = None
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620


def test_OnDiskDataset_Feature_heterograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_paper = np.random.rand(1000, 10)
        node_data_paper_path = os.path.join(test_dir, "node_data_paper.npy")
        np.save(node_data_paper_path, node_data_paper)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_writes = np.random.rand(1000, 10)
        edge_data_writes_path = os.path.join(test_dir, "edge_writes_paper.npy")
        np.save(edge_data_writes_path, edge_data_writes)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                type: paper
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_paper_path}
              - domain: node
                type: paper
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                type: "author:writes:paper"
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_writes_path}
              - domain: edge
                type: "author:writes:paper"
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify feature data storage.
        feature_data = dataset.feature()
        assert len(feature_data) == 4

        # Verify node feature data.
        node_paper_feat = feature_data[("node", "paper", "feat")]
        assert isinstance(node_paper_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(
            node_paper_feat.read(), torch.tensor(node_data_paper)
        )
        node_paper_label = feature_data[("node", "paper", "label")]
        assert isinstance(node_paper_label, gb.TorchBasedFeatureStore)
        assert torch.equal(
            node_paper_label.read(), torch.tensor(node_data_label)
        )

        # Verify edge feature data.
        edge_writes_feat = feature_data[("edge", "author:writes:paper", "feat")]
        assert isinstance(edge_writes_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(
            edge_writes_feat.read(), torch.tensor(edge_data_writes)
        )
        edge_writes_label = feature_data[
            ("edge", "author:writes:paper", "label")
        ]
        assert isinstance(edge_writes_label, gb.TorchBasedFeatureStore)
        assert torch.equal(
            edge_writes_label.read(), torch.tensor(edge_data_label)
        )

        node_paper_feat = None
        node_paper_label = None
        edge_writes_feat = None
        edge_writes_label = None
        feature_data = None
        dataset = None


def test_OnDiskDataset_Feature_homograph():
    """Test Feature storage."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Generate node data.
        node_data_feat = np.random.rand(1000, 10)
        node_data_feat_path = os.path.join(test_dir, "node_data_feat.npy")
        np.save(node_data_feat_path, node_data_feat)
        node_data_label = np.random.randint(0, 10, size=1000)
        node_data_label_path = os.path.join(test_dir, "node_data_label.npy")
        np.save(node_data_label_path, node_data_label)

        # Generate edge data.
        edge_data_feat = np.random.rand(1000, 10)
        edge_data_feat_path = os.path.join(test_dir, "edge_data_feat.npy")
        np.save(edge_data_feat_path, edge_data_feat)
        edge_data_label = np.random.randint(0, 10, size=1000)
        edge_data_label_path = os.path.join(test_dir, "edge_data_label.npy")
        np.save(edge_data_label_path, edge_data_label)

        # Generate YAML.
        # ``type`` is not specified in the YAML.
        yaml_content = f"""
            feature_data:
              - domain: node
                name: feat
                format: numpy
                in_memory: false
                path: {node_data_feat_path}
              - domain: node
                name: label
                format: numpy
                in_memory: true
                path: {node_data_label_path}
              - domain: edge
                name: feat
                format: numpy
                in_memory: false
                path: {edge_data_feat_path}
              - domain: edge
                name: label
                format: numpy
                in_memory: true
                path: {edge_data_label_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)

        # Verify feature data storage.
        feature_data = dataset.feature()
        assert len(feature_data) == 4

        # Verify node feature data.
        node_feat = feature_data[("node", None, "feat")]
        assert isinstance(node_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(node_feat.read(), torch.tensor(node_data_feat))
        node_label = feature_data[("node", None, "label")]
        assert isinstance(node_label, gb.TorchBasedFeatureStore)
        assert torch.equal(node_label.read(), torch.tensor(node_data_label))

        # Verify edge feature data.
        edge_feat = feature_data[("edge", None, "feat")]
        assert isinstance(edge_feat, gb.TorchBasedFeatureStore)
        assert torch.equal(edge_feat.read(), torch.tensor(edge_data_feat))
        edge_label = feature_data[("edge", None, "label")]
        assert isinstance(edge_label, gb.TorchBasedFeatureStore)
        assert torch.equal(edge_label.read(), torch.tensor(edge_data_label))

        node_feat = None
        node_label = None
        edge_feat = None
        edge_label = None
        feature_data = None
        dataset = None
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714


def test_OnDiskDataset_Graph_Exceptions():
    """Test exceptions in parsing graph topology."""
    with tempfile.TemporaryDirectory() as test_dir:
        # Invalid graph type.
        yaml_content = """
            graph_topology:
              type: CSRSamplingGraph
              path: /path/to/graph
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        with pytest.raises(
            pydantic.ValidationError,
            match="value is not a valid enumeration member",
        ):
            _ = gb.OnDiskDataset(yaml_file)


def test_OnDiskDataset_Graph_homogeneous():
    """Test homogeneous graph topology."""
    csc_indptr, indices = gbt.random_homo_graph(1000, 10 * 1000)
    graph = gb.from_csc(csc_indptr, indices)

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
        graph2 = dataset.graph()

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)

        assert graph.metadata is None and graph2.metadata is None
        assert (
            graph.node_type_offset is None and graph2.node_type_offset is None
        )
        assert graph.type_per_edge is None and graph2.type_per_edge is None


def test_OnDiskDataset_Graph_heterogeneous():
    """Test heterogeneous graph topology."""
    (
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
        metadata,
    ) = gbt.random_hetero_graph(1000, 10 * 1000, 3, 4)
    graph = gb.from_csc(
        csc_indptr, indices, node_type_offset, type_per_edge, metadata
    )

    with tempfile.TemporaryDirectory() as test_dir:
        graph_path = os.path.join(test_dir, "csc_sampling_graph.tar")
        gb.save_csc_sampling_graph(graph, graph_path)

        yaml_content = f"""
            graph_topology:
              type: CSCSamplingGraph
              path: {graph_path}
        """
        yaml_file = os.path.join(test_dir, "test.yaml")
        with open(yaml_file, "w") as f:
            f.write(yaml_content)

        dataset = gb.OnDiskDataset(yaml_file)
        graph2 = dataset.graph()

        assert graph.num_nodes == graph2.num_nodes
        assert graph.num_edges == graph2.num_edges

        assert torch.equal(graph.csc_indptr, graph2.csc_indptr)
        assert torch.equal(graph.indices, graph2.indices)
        assert torch.equal(graph.node_type_offset, graph2.node_type_offset)
        assert torch.equal(graph.type_per_edge, graph2.type_per_edge)
        assert graph.metadata.node_type_to_id == graph2.metadata.node_type_to_id
        assert graph.metadata.edge_type_to_id == graph2.metadata.edge_type_to_id