test_data.py 67 KB
Newer Older
1
2
import unittest
import backend as F
3
import numpy as np
4
5
6
import gzip
import tempfile
import os
7
8
9
import pandas as pd
import yaml
import pytest
10
import dgl
11
12
import dgl.data as data
from dgl import DGLError
13
import dgl
14
15

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
16
17
18
19
def test_minigc():
    ds = data.MiniGCDataset(16, 10, 20)
    g, l = list(zip(*ds))
    print(g, l)
20
21
22
23
24
    g1 = ds[0][0]
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.MiniGCDataset(16, 10, 20, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
25
26
27
28
29
30
31
32
33
34

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gin():
    ds_n_graphs = {
        'MUTAG': 188,
        'IMDBBINARY': 1000,
        'IMDBMULTI': 1500,
        'PROTEINS': 1113,
        'PTC': 344,
    }
35
    transform = dgl.AddSelfLoop(allow_duplicate=True)
36
37
38
    for name, n_graphs in ds_n_graphs.items():
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False)
        assert len(ds) == n_graphs, (len(ds), name)
39
40
41
42
        g1 = ds[0][0]
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False, transform=transform)
        g2 = ds[0][0]
        assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
Mufei Li's avatar
Mufei Li committed
43
        assert ds.num_classes == ds.gclasses
44

45
46
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fraud():
47
48
    transform = dgl.AddSelfLoop(allow_duplicate=True)

49
50
    g = data.FraudDataset('amazon')[0]
    assert g.num_nodes() == 11944
51
52
53
54
    num_edges1 = g.num_edges()
    g2 = data.FraudDataset('amazon', transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - num_edges1 == g.num_nodes() * 3
55
56
57

    g = data.FraudAmazonDataset()[0]
    assert g.num_nodes() == 11944
58
59
60
    g2 = data.FraudAmazonDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
61
62
63

    g = data.FraudYelpDataset()[0]
    assert g.num_nodes() == 45954
64
65
66
    g2 = data.FraudYelpDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
67
68
69

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fakenews():
70
71
    transform = dgl.AddSelfLoop(allow_duplicate=True)

72
73
    ds = data.FakeNewsDataset('politifact', 'bert')
    assert len(ds) == 314
74
75
76
    g = ds[0][0]
    g2 = data.FakeNewsDataset('politifact', 'bert', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
77
78
79

    ds = data.FakeNewsDataset('gossipcop', 'profile')
    assert len(ds) == 5464
80
81
82
    g = ds[0][0]
    g2 = data.FakeNewsDataset('gossipcop', 'profile', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
Jinjing Zhou's avatar
Jinjing Zhou committed
83
84

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
85
def test_tudataset_regression():
Jinjing Zhou's avatar
Jinjing Zhou committed
86
    ds = data.TUDataset('ZINC_test', force_reload=True)
Mufei Li's avatar
Mufei Li committed
87
    assert ds.num_classes == ds.num_labels
Jinjing Zhou's avatar
Jinjing Zhou committed
88
    assert len(ds) == 5000
89
    g = ds[0][0]
Jinjing Zhou's avatar
Jinjing Zhou committed
90

91
92
93
94
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.TUDataset('ZINC_test', force_reload=True, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
95

96
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
97
98
99
def test_data_hash():
    class HashTestDataset(data.DGLDataset):
        def __init__(self, hash_key=()):
100
101
102
            super(HashTestDataset, self).__init__(
                'hashtest', hash_key=hash_key)

103
104
105
        def _load(self):
            pass

106
107
108
    a = HashTestDataset((True, 0, '1', (1, 2, 3)))
    b = HashTestDataset((True, 0, '1', (1, 2, 3)))
    c = HashTestDataset((True, 0, '1', (1, 2, 4)))
109
110
111
    assert a.hash == b.hash
    assert a.hash != c.hash

112

113
114
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_citation_graph():
115
116
    transform = dgl.AddSelfLoop(allow_duplicate=True)

117
118
119
120
121
122
    # cora
    g = data.CoraGraphDataset()[0]
    assert g.num_nodes() == 2708
    assert g.num_edges() == 10556
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
123
124
    g2 = data.CoraGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
125
126
127
128
129
130
131

    # Citeseer
    g = data.CiteseerGraphDataset()[0]
    assert g.num_nodes() == 3327
    assert g.num_edges() == 9228
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
132
133
    g2 = data.CiteseerGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
134
135
136
137
138
139
140

    # Pubmed
    g = data.PubmedGraphDataset()[0]
    assert g.num_nodes() == 19717
    assert g.num_edges() == 88651
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
141
142
    g2 = data.PubmedGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
143
144
145
146


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gnn_benchmark():
147
148
    transform = dgl.AddSelfLoop(allow_duplicate=True)

149
150
151
152
153
154
    # AmazonCoBuyComputerDataset
    g = data.AmazonCoBuyComputerDataset()[0]
    assert g.num_nodes() == 13752
    assert g.num_edges() == 491722
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
155
156
    g2 = data.AmazonCoBuyComputerDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
157
158
159
160
161
162
163

    # AmazonCoBuyPhotoDataset
    g = data.AmazonCoBuyPhotoDataset()[0]
    assert g.num_nodes() == 7650
    assert g.num_edges() == 238163
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
164
165
    g2 = data.AmazonCoBuyPhotoDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
166
167
168
169
170
171
172

    # CoauthorPhysicsDataset
    g = data.CoauthorPhysicsDataset()[0]
    assert g.num_nodes() == 34493
    assert g.num_edges() == 495924
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
173
174
    g2 = data.CoauthorPhysicsDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
175
176
177
178
179
180
181

    # CoauthorCSDataset
    g = data.CoauthorCSDataset()[0]
    assert g.num_nodes() == 18333
    assert g.num_edges() == 163788
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
182
183
    g2 = data.CoauthorCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
184
185
186
187
188
189
190

    # CoraFullDataset
    g = data.CoraFullDataset()[0]
    assert g.num_nodes() == 19793
    assert g.num_edges() == 126842
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
191
192
    g2 = data.CoraFullDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
193
194
195
196
197
198
199
200
201
202
203


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_reddit():
    # RedditDataset
    g = data.RedditDataset()[0]
    assert g.num_nodes() == 232965
    assert g.num_edges() == 114615892
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

204
205
206
207
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.RedditDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_explain_syn():
    dataset = data.BAShapeDataset()
    assert dataset.num_classes == 4
    g = dataset[0]
    assert 'label' in g.ndata
    assert 'feat' in g.ndata

    g1 = data.BAShapeDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.BAShapeDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.BACommunityDataset()
    assert dataset.num_classes == 8
    g = dataset[0]
    assert 'label' in g.ndata
    assert 'feat' in g.ndata

    g1 = data.BACommunityDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.BACommunityDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.TreeCycleDataset()
    assert dataset.num_classes == 2
    g = dataset[0]
    assert 'label' in g.ndata
    assert 'feat' in g.ndata

    g1 = data.TreeCycleDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.TreeCycleDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.TreeGridDataset()
    assert dataset.num_classes == 2
    g = dataset[0]
    assert 'label' in g.ndata
    assert 'feat' in g.ndata

    g1 = data.TreeGridDataset(force_reload=True, seed=0)[0]
    src1, dst1 = g1.edges()
    g2 = data.TreeGridDataset(force_reload=True, seed=0)[0]
    src2, dst2 = g2.edges()
    assert F.allclose(src1, src2)
    assert F.allclose(dst1, dst2)

    dataset = data.BA2MotifDataset()
    assert dataset.num_classes == 2
    g, label = dataset[0]
    assert 'feat' in g.ndata
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_extract_archive():
    # gzip
    with tempfile.TemporaryDirectory() as src_dir:
        gz_file = 'gz_archive'
        gz_path = os.path.join(src_dir, gz_file + '.gz')
        content = b"test extract archive gzip"
        with gzip.open(gz_path, 'wb') as f:
            f.write(content)
        with tempfile.TemporaryDirectory() as dst_dir:
            data.utils.extract_archive(gz_path, dst_dir, overwrite=True)
            assert os.path.exists(os.path.join(dst_dir, gz_file))


281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def _test_construct_graphs_node_ids():
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
    num_nodes = 100
    num_edges = 1000

    # node IDs are required to be unique
    node_ids = np.random.choice(np.arange(num_nodes / 2), num_nodes)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    expect_except = False
    try:
        _, _ = DGLGraphConstructor.construct_graphs(
            node_data, edge_data)
    except:
        expect_except = True
    assert expect_except

    # node IDs are already labelled from 0~num_nodes-1
    node_ids = np.arange(num_nodes)
    np.random.shuffle(node_ids)
    _, idx = np.unique(node_ids, return_index=True)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_feat = np.random.rand(num_nodes, 3)
    node_data = NodeData(node_ids, {'feat':node_feat})
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)
    assert F.array_equal(F.tensor(node_feat[idx], dtype=F.float32), g.ndata['feat'])

    # node IDs are mixed with numeric and non-numeric values
    # homogeneous graph
    node_ids = [1, 2, 3, 'a']
    src_ids = [1, 2, 3]
    dst_ids = ['a', 1, 2]
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)

    # heterogeneous graph
    node_ids_user = [1, 2, 3]
    node_ids_item = ['a', 'b', 'c']
    src_ids = node_ids_user
    dst_ids = node_ids_item
    node_data_user = NodeData(node_ids_user, {}, type='user')
    node_data_item = NodeData(node_ids_item, {}, type='item')
    edge_data = EdgeData(src_ids, dst_ids, {}, type=('user', 'like', 'item'))
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        [node_data_user, node_data_item], edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
    assert g.num_nodes('user') == len(node_ids_user)
    assert g.num_nodes('item') == len(node_ids_item)
    assert g.num_edges() == len(src_ids)


354
def _test_construct_graphs_homo():
355
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
356
    # node_id could be non-sorted, non-numeric.
357
358
359
360
361
362
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    node_ids = np.random.choice(
        np.arange(num_nodes*2), size=num_nodes, replace=False)
    assert len(node_ids) == num_nodes
363
    # to be non-sorted
364
    np.random.shuffle(node_ids)
365
366
    # to be non-numeric
    node_ids = ['id_{}'.format(id) for id in node_ids]
367
368
    t_ndata = {'feat': np.random.rand(num_nodes, num_dims),
               'label': np.random.randint(2, size=num_nodes)}
369
370
371
    _, u_indices = np.unique(node_ids, return_index=True)
    ndata = {'feat': t_ndata['feat'][u_indices],
             'label': t_ndata['label'][u_indices]}
372
    node_data = NodeData(node_ids, t_ndata)
373
374
375
376
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    edata = {'feat': np.random.rand(
        num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
377
378
    edge_data = EdgeData(src_ids, dst_ids, edata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
379
380
381
382
383
384
385
386
387
388
389
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == num_nodes
    assert g.num_edges() == num_edges

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
390
391
392
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
393
394
395
396
397
    assert_data(ndata, g.ndata)
    assert_data(edata, g.edata)


def _test_construct_graphs_hetero():
398
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
399
    # node_id/src_id/dst_id could be non-sorted, duplicated, non-numeric.
400
401
402
403
404
405
406
407
408
409
410
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    ntypes = ['user', 'item']
    node_data = []
    node_ids_dict = {}
    ndata_dict = {}
    for ntype in ntypes:
        node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        assert len(node_ids) == num_nodes
411
        # to be non-sorted
412
        np.random.shuffle(node_ids)
413
414
        # to be non-numeric
        node_ids = ['id_{}'.format(id) for id in node_ids]
415
416
        t_ndata = {'feat': np.random.rand(num_nodes, num_dims),
                   'label': np.random.randint(2, size=num_nodes)}
417
418
419
        _, u_indices = np.unique(node_ids, return_index=True)
        ndata = {'feat': t_ndata['feat'][u_indices],
                 'label': t_ndata['label'][u_indices]}
420
        node_data.append(NodeData(node_ids, t_ndata, type=ntype))
421
422
423
424
425
426
427
428
429
430
        node_ids_dict[ntype] = node_ids
        ndata_dict[ntype] = ndata
    etypes = [('user', 'follow', 'user'), ('user', 'like', 'item')]
    edge_data = []
    edata_dict = {}
    for src_type, e_type, dst_type in etypes:
        src_ids = np.random.choice(node_ids_dict[src_type], size=num_edges)
        dst_ids = np.random.choice(node_ids_dict[dst_type], size=num_edges)
        edata = {'feat': np.random.rand(
            num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
431
        edge_data.append(EdgeData(src_ids, dst_ids, edata,
432
433
                         type=(src_type, e_type, dst_type)))
        edata_dict[(src_type, e_type, dst_type)] = edata
434
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
435
436
437
438
439
440
441
442
443
444
445
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
    assert g.num_nodes() == num_nodes*len(ntypes)
    assert g.num_edges() == num_edges*len(etypes)

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
446
447
448
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
449
450
451
452
453
454
455
456
457
    for ntype in g.ntypes:
        assert g.num_nodes(ntype) == num_nodes
        assert_data(ndata_dict[ntype], g.nodes[ntype].data)
    for etype in g.canonical_etypes:
        assert g.num_edges(etype) == num_edges
        assert_data(edata_dict[etype], g.edges[etype].data)


def _test_construct_graphs_multiple():
458
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData, DGLGraphConstructor
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    num_nodes = 100
    num_edges = 1000
    num_graphs = 10
    num_dims = 3
    node_ids = np.array([], dtype=np.int)
    src_ids = np.array([], dtype=np.int)
    dst_ids = np.array([], dtype=np.int)
    ngraph_ids = np.array([], dtype=np.int)
    egraph_ids = np.array([], dtype=np.int)
    u_indices = np.array([], dtype=np.int)
    for i in range(num_graphs):
        l_node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        node_ids = np.append(node_ids, l_node_ids)
        _, l_u_indices = np.unique(l_node_ids, return_index=True)
        u_indices = np.append(u_indices, l_u_indices)
        ngraph_ids = np.append(ngraph_ids, np.full(num_nodes, i))
        src_ids = np.append(src_ids, np.random.choice(
            l_node_ids, size=num_edges))
        dst_ids = np.append(dst_ids, np.random.choice(
            l_node_ids, size=num_edges))
        egraph_ids = np.append(egraph_ids, np.full(num_edges, i))
    ndata = {'feat': np.random.rand(num_nodes*num_graphs, num_dims),
             'label': np.random.randint(2, size=num_nodes*num_graphs)}
483
    ngraph_ids = ['graph_{}'.format(id) for id in ngraph_ids]
484
    node_data = NodeData(node_ids, ndata, graph_id=ngraph_ids)
485
    egraph_ids = ['graph_{}'.format(id) for id in egraph_ids]
486
487
    edata = {'feat': np.random.rand(
        num_edges*num_graphs, num_dims), 'label': np.random.randint(2, size=num_edges*num_graphs)}
488
    edge_data = EdgeData(src_ids, dst_ids, edata, graph_id=egraph_ids)
489
490
    gdata = {'feat': np.random.rand(num_graphs, num_dims),
             'label': np.random.randint(2, size=num_graphs)}
491
492
    graph_ids = ['graph_{}'.format(id) for id in np.arange(num_graphs)]
    graph_data = GraphData(graph_ids, gdata)
493
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
494
495
496
497
        node_data, edge_data, graph_data)
    assert len(graphs) == num_graphs
    assert len(data_dict) == len(gdata)
    for k, v in data_dict.items():
498
        assert F.dtype(v) != F.float64
Mufei Li's avatar
Mufei Li committed
499
        assert F.array_equal(F.reshape(F.tensor(gdata[k], dtype=F.dtype(v)), (len(graphs), -1)), v)
500
501
502
503
504
505
506
507
508
509
510
511
    for i, g in enumerate(graphs):
        assert g.is_homogeneous
        assert g.num_nodes() == num_nodes
        assert g.num_edges() == num_edges

        def assert_data(lhs, rhs, size, node=False):
            for key, value in lhs.items():
                assert key in rhs
                value = value[i*size:(i+1)*size]
                if node:
                    indices = u_indices[i*size:(i+1)*size]
                    value = value[indices]
512
513
514
                assert F.dtype(rhs[key]) != F.float64
                assert F.array_equal(
                    F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
515
516
517
518
        assert_data(ndata, g.ndata, num_nodes, node=True)
        assert_data(edata, g.edata, num_edges)

    # Graph IDs found in node/edge CSV but not in graph CSV
519
    graph_data = GraphData(np.arange(num_graphs-2), {})
520
521
    expect_except = False
    try:
522
        _, _ = DGLGraphConstructor.construct_graphs(
523
524
525
526
527
528
529
            node_data, edge_data, graph_data)
    except:
        expect_except = True
    assert expect_except


def _test_DefaultDataParser():
530
    from dgl.data.csv_dataset_base import DefaultDataParser
531
532
533
534
535
536
537
538
539
540
541
542
543
    # common csv
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        num_nodes = 5
        num_labels = 3
        num_dims = 2
        node_id = np.arange(num_nodes)
        label = np.random.randint(num_labels, size=num_nodes)
        feat = np.random.rand(num_nodes, num_dims)
        df = pd.DataFrame({'node_id': node_id, 'label': label,
                           'feat': [line.tolist() for line in feat],
                           })
        df.to_csv(csv_path, index=False)
544
        dp = DefaultDataParser()
545
546
547
548
549
550
551
552
553
554
555
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert np.array_equal(node_id, dt['node_id'])
        assert np.array_equal(label, dt['label'])
        assert np.array_equal(feat, dt['feat'])
    # string consists of non-numeric values
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': ['a', 'b', 'c'],
                           })
        df.to_csv(csv_path, index=False)
556
        dp = DefaultDataParser()
557
558
559
560
561
562
563
564
565
566
567
568
569
        df = pd.read_csv(csv_path)
        expect_except = False
        try:
            dt = dp(df)
        except:
            expect_except = True
        assert expect_except
    # csv has index column which is ignored as it's unnamed
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': [1, 2, 3],
                           })
        df.to_csv(csv_path)
570
        dp = DefaultDataParser()
571
572
573
574
575
576
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert len(dt) == 1


def _test_load_yaml_with_sanity_check():
577
    from dgl.data.csv_dataset_base import load_yaml_with_sanity_check
578
579
580
581
582
583
584
    with tempfile.TemporaryDirectory() as test_dir:
        yaml_path = os.path.join(test_dir, 'meta.yaml')
        # workable but meaningless usually
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
585
        meta = load_yaml_with_sanity_check(yaml_path)
586
587
588
589
590
591
592
593
594
595
596
597
        assert meta.version == '1.0.0'
        assert meta.dataset_name == 'default'
        assert meta.separator == ','
        assert len(meta.node_data) == 0
        assert len(meta.edge_data) == 0
        assert meta.graph_data is None
        # minimum with required fields only
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
598
        meta = load_yaml_with_sanity_check(yaml_path)
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        for ndata in meta.node_data:
            assert ndata.file_name == 'nodes.csv'
            assert ndata.ntype == '_V'
            assert ndata.graph_id_field == 'graph_id'
            assert ndata.node_id_field == 'node_id'
        for edata in meta.edge_data:
            assert edata.file_name == 'edges.csv'
            assert edata.etype == ['_V', '_E', '_V']
            assert edata.graph_id_field == 'graph_id'
            assert edata.src_id_field == 'src_id'
            assert edata.dst_id_field == 'dst_id'
        # optional fields are specified
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default',
                     'separator': '|',
                     'node_data': [{'file_name': 'nodes.csv', 'ntype': 'user', 'graph_id_field': 'xxx', 'node_id_field': 'xxx'}],
                     'edge_data': [{'file_name': 'edges.csv', 'etype': ['user', 'follow', 'user'], 'graph_id_field':'xxx', 'src_id_field':'xxx', 'dst_id_field':'xxx'}],
                     'graph_data': {'file_name': 'graph.csv', 'graph_id_field': 'xxx'}
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
619
        meta = load_yaml_with_sanity_check(yaml_path)
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
        assert len(meta.node_data) == 1
        ndata = meta.node_data[0]
        assert ndata.ntype == 'user'
        assert ndata.graph_id_field == 'xxx'
        assert ndata.node_id_field == 'xxx'
        assert len(meta.edge_data) == 1
        edata = meta.edge_data[0]
        assert edata.etype == ['user', 'follow', 'user']
        assert edata.graph_id_field == 'xxx'
        assert edata.src_id_field == 'xxx'
        assert edata.dst_id_field == 'xxx'
        assert meta.graph_data is not None
        assert meta.graph_data.file_name == 'graph.csv'
        assert meta.graph_data.graph_id_field == 'xxx'
        # some required fields are missing
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        for field in yaml_data.keys():
            ydata = {k: v for k, v in yaml_data.items()}
            ydata.pop(field)
            with open(yaml_path, 'w') as f:
                yaml.dump(ydata, f, sort_keys=False)
            expect_except = False
            try:
644
                meta = load_yaml_with_sanity_check(yaml_path)
645
646
647
648
649
650
651
652
653
654
655
            except:
                expect_except = True
            assert expect_except
        # inapplicable version
        yaml_data = {'version': '0.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes_0.csv'}],
                     'edge_data': [{'file_name': 'edges_0.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
656
            meta = load_yaml_with_sanity_check(yaml_path)
657
658
659
660
661
662
663
664
665
666
667
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate node types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}, {'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
668
            meta = load_yaml_with_sanity_check(yaml_path)
669
670
671
672
673
674
675
676
677
678
679
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate edge types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}, {'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
680
            meta = load_yaml_with_sanity_check(yaml_path)
681
682
683
684
685
686
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_node_data_from_csv():
687
    from dgl.data.csv_dataset_base import MetaNode, NodeData, DefaultDataParser
688
689
690
691
692
693
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        # minimum
        df = pd.DataFrame({'node_id': np.arange(num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
694
695
696
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
697
698
699
700
701
702
703
704
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 0

        # common case
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                          'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
705
706
707
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
708
709
710
711
712
713
714
715
716
717
718
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(np.full(num_nodes, 0), node_data.graph_id)
        assert node_data.type == '_V'

        # add more fields into nodes.csv
        df = pd.DataFrame({'node_id': np.arange(num_nodes), 'label': np.random.randint(
            3, size=num_nodes), 'graph_id': np.full(num_nodes, 1)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
719
720
721
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
722
723
724
725
726
727
728
729
730
731
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(df['graph_id'], node_data.graph_id)
        assert node_data.type == '_V'

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
732
        meta_node = MetaNode(file_name=csv_path)
733
734
        expect_except = False
        try:
735
736
            NodeData.load_from_csv(
                meta_node, DefaultDataParser())
737
738
739
740
741
742
        except:
            expect_except = True
        assert expect_except


def _test_load_edge_data_from_csv():
743
    from dgl.data.csv_dataset_base import MetaEdge, EdgeData, DefaultDataParser
744
745
746
747
748
749
750
751
752
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        num_edges = 1000
        # minimum
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
753
754
755
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
756
757
758
759
760
761
762
763
764
765
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 0

        # common case
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
766
767
768
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 1
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(np.full(num_edges, 0), edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # add more fields into edges.csv
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'graph_id': np.arange(num_edges),
                           'feat': np.random.randint(3, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
784
785
786
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
787
788
789
790
791
792
793
794
795
796
797
798
799
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 2
        assert np.array_equal(df['feat'], edge_data.data['feat'])
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(df['graph_id'], edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # required headers are missing
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
800
        meta_edge = MetaEdge(file_name=csv_path)
801
802
        expect_except = False
        try:
803
804
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
805
806
807
808
809
810
811
        except DGLError:
            expect_except = True
        assert expect_except
        df = pd.DataFrame({'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
812
        meta_edge = MetaEdge(file_name=csv_path)
813
814
        expect_except = False
        try:
815
816
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
817
818
819
820
821
822
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_graph_data_from_csv():
823
    from dgl.data.csv_dataset_base import MetaGraph, GraphData, DefaultDataParser
824
825
826
827
828
829
    with tempfile.TemporaryDirectory() as test_dir:
        num_graphs = 100
        # minimum
        df = pd.DataFrame({'graph_id': np.arange(num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
830
831
832
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
833
834
835
836
837
838
839
840
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 0

        # common case
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                          'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
841
842
843
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
844
845
846
847
848
849
850
851
852
853
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 1
        assert np.array_equal(df['label'], graph_data.data['label'])

        # add more fields into graph.csv
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                           'feat': np.random.randint(3, size=num_graphs),
                           'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
854
855
856
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
857
858
859
860
861
862
863
864
865
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 2
        assert np.array_equal(df['feat'], graph_data.data['feat'])
        assert np.array_equal(df['label'], graph_data.data['label'])

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
866
        meta_graph = MetaGraph(file_name=csv_path)
867
868
        expect_except = False
        try:
869
870
            GraphData.load_from_csv(
                meta_graph, DefaultDataParser())
871
872
873
874
875
        except DGLError:
            expect_except = True
        assert expect_except


876
def _test_CSVDataset_single():
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges, num_dims)
        label_edata = np.random.randint(2, size=num_edges)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)

        # load CSVDataset
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
927
            csv_dataset = data.CSVDataset(
928
929
930
931
932
933
934
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == 1
            g = csv_dataset[0]
            assert not g.is_homogeneous
            assert csv_dataset.has_cache()
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
935
                assert F.array_equal(F.tensor(feat_ndata, dtype=F.float32),
936
937
938
939
940
                                     g.nodes[ntype].data['feat'])
                assert np.array_equal(label_ndata,
                                      F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
941
                assert F.array_equal(F.tensor(feat_edata, dtype=F.float32),
942
943
944
945
946
                                     g.edges[etype].data['feat'])
                assert np.array_equal(label_edata,
                                      F.asnumpy(g.edges[etype].data['label']))


947
def _test_CSVDataset_multiple():
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes*num_graphs, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges*num_graphs, num_dims)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        feat_gdata = np.random.rand(num_graphs, num_dims)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'feat': [line.tolist() for line in feat_gdata],
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

1004
        # load CSVDataset with default node/edge/gdata_parser
1005
1006
1007
1008
1009
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
1010
            csv_dataset = data.CSVDataset(
1011
1012
1013
1014
1015
1016
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == num_graphs
            assert csv_dataset.has_cache()
            assert len(csv_dataset.data) == 2
            assert 'feat' in csv_dataset.data
            assert 'label' in csv_dataset.data
1017
            assert F.array_equal(F.tensor(feat_gdata, dtype=F.float32),
1018
                                 csv_dataset.data['feat'])
1019
            for i, (g, g_data) in enumerate(csv_dataset):
1020
                assert not g.is_homogeneous
1021
                assert F.asnumpy(g_data['label']) == label_gdata[i]
1022
                assert F.array_equal(g_data['feat'], F.tensor(feat_gdata[i], dtype=F.float32))
1023
1024
                for ntype in g.ntypes:
                    assert g.num_nodes(ntype) == num_nodes
1025
                    assert F.array_equal(F.tensor(feat_ndata[i*num_nodes:(i+1)*num_nodes], dtype=F.float32),
1026
1027
1028
1029
1030
                                         g.nodes[ntype].data['feat'])
                    assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes],
                                          F.asnumpy(g.nodes[ntype].data['label']))
                for etype in g.etypes:
                    assert g.num_edges(etype) == num_edges
1031
                    assert F.array_equal(F.tensor(feat_edata[i*num_edges:(i+1)*num_edges], dtype=F.float32),
1032
1033
1034
1035
1036
                                         g.edges[etype].data['feat'])
                    assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges],
                                          F.asnumpy(g.edges[etype].data['label']))


1037
def _test_CSVDataset_customized_data_parser():
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

        class CustDataParser:
            def __call__(self, df):
                data = {}
                for header in df:
                    dt = df[header].to_numpy().squeeze()
                    if header == 'label':
                        dt += 2
                    data[header] = dt
                return data
1096
1097
1098
1099
1100
1101
        # load CSVDataset with customized node/edge/gdata_parser
        # specify via dict[ntype/etype, callable]
        csv_dataset = data.CSVDataset(
            test_dir, force_reload=True, ndata_parser={'user': CustDataParser()},
            edata_parser={('user', 'like', 'item'): CustDataParser()},
            gdata_parser=CustDataParser())
1102
1103
1104
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
        assert 'label' in csv_dataset.data
1105
        for i, (g, g_data) in enumerate(csv_dataset):
1106
            assert not g.is_homogeneous
Mufei Li's avatar
Mufei Li committed
1107
            assert F.asnumpy(g_data) == label_gdata[i] + 2
1108
1109
1110
1111
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2 if ntype == 'user' else 0
                assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes]+offset,
1112
                                    F.asnumpy(g.nodes[ntype].data['label']))
1113
1114
1115
1116
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2 if etype == 'like' else 0
                assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges]+offset,
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
                                    F.asnumpy(g.edges[etype].data['label']))
        # specify via callable
        csv_dataset = data.CSVDataset(
            test_dir, force_reload=True, ndata_parser=CustDataParser(),
            edata_parser=CustDataParser(), gdata_parser=CustDataParser())
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
        assert 'label' in csv_dataset.data
        for i, (g, g_data) in enumerate(csv_dataset):
            assert not g.is_homogeneous
Mufei Li's avatar
Mufei Li committed
1127
            assert F.asnumpy(g_data) == label_gdata[i] + 2
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2
                assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes]+offset,
                                    F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2
                assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges]+offset,
                                    F.asnumpy(g.edges[etype].data['label']))
1138
1139
1140


def _test_NodeEdgeGraphData():
1141
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData
1142
1143
1144
    # NodeData basics
    num_nodes = 100
    node_ids = np.arange(num_nodes, dtype=np.float)
1145
    ndata = NodeData(node_ids, {})
1146
    assert np.array_equal(ndata.id, node_ids)
1147
1148
1149
1150
1151
1152
    assert len(ndata.data) == 0
    assert ndata.type == '_V'
    assert np.array_equal(ndata.graph_id, np.full(num_nodes, 0))
    # NodeData more
    data = {'feat': np.random.rand(num_nodes, 3)}
    graph_id = np.arange(num_nodes)
1153
    ndata = NodeData(node_ids, data, type='user', graph_id=graph_id)
1154
1155
1156
1157
1158
1159
1160
1161
1162
    assert ndata.type == 'user'
    assert np.array_equal(ndata.graph_id, graph_id)
    assert len(ndata.data) == len(data)
    for k, v in data.items():
        assert k in ndata.data
        assert np.array_equal(ndata.data[k], v)
    # NodeData except
    expect_except = False
    try:
1163
        NodeData(np.arange(num_nodes), {'feat': np.random.rand(
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
            num_nodes+1, 3)}, graph_id=np.arange(num_nodes-1))
    except:
        expect_except = True
    assert expect_except

    # EdgeData basics
    num_nodes = 100
    num_edges = 1000
    src_ids = np.random.randint(num_nodes, size=num_edges)
    dst_ids = np.random.randint(num_nodes, size=num_edges)
1174
    edata = EdgeData(src_ids, dst_ids, {})
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == ('_V', '_E', '_V')
    assert len(edata.data) == 0
    assert np.array_equal(edata.graph_id, np.full(num_edges, 0))
    # EdageData more
    src_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    dst_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    data = {'feat': np.random.rand(num_edges, 3)}
    etype = ('user', 'like', 'item')
    graph_ids = np.arange(num_edges)
1186
    edata = EdgeData(src_ids, dst_ids, data,
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
                            type=etype, graph_id=graph_ids)
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == etype
    assert len(edata.data) == len(data)
    for k, v in data.items():
        assert k in edata.data
        assert np.array_equal(edata.data[k], v)
    assert np.array_equal(edata.graph_id, graph_ids)
    # EdgeData except
    expect_except = False
    try:
1199
        EdgeData(np.arange(num_edges), np.arange(
1200
1201
1202
1203
1204
1205
1206
1207
            num_edges+1), {'feat': np.random.rand(num_edges-1, 3)}, graph_id=np.arange(num_edges+2))
    except:
        expect_except = True
    assert expect_except

    # GraphData basics
    num_graphs = 10
    graph_ids = np.arange(num_graphs)
1208
    gdata = GraphData(graph_ids, {})
1209
1210
1211
1212
1213
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == 0
    # GraphData more
    graph_ids = np.arange(num_graphs).astype(np.float)
    data = {'feat': np.random.rand(num_graphs, 3)}
1214
    gdata = GraphData(graph_ids, data)
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == len(data)
    for k, v in data.items():
        assert k in gdata.data
        assert np.array_equal(gdata.data[k], v)


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_csvdataset():
    _test_NodeEdgeGraphData()
1225
    _test_construct_graphs_node_ids()
1226
1227
1228
1229
1230
1231
1232
1233
    _test_construct_graphs_homo()
    _test_construct_graphs_hetero()
    _test_construct_graphs_multiple()
    _test_DefaultDataParser()
    _test_load_yaml_with_sanity_check()
    _test_load_node_data_from_csv()
    _test_load_edge_data_from_csv()
    _test_load_graph_data_from_csv()
1234
1235
1236
    _test_CSVDataset_single()
    _test_CSVDataset_multiple()
    _test_CSVDataset_customized_data_parser()
1237

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_add_nodepred_split():
    dataset = data.AmazonCoBuyComputerDataset()
    print('train_mask' in dataset[0].ndata)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1])
    assert 'train_mask' in dataset[0].ndata

    dataset = data.AIFBDataset()
    print('train_mask' in dataset[0].nodes['Publikationen'].data)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1], ntype='Publikationen')
    assert 'train_mask' in dataset[0].nodes['Publikationen'].data

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred1():
    ds = data.AmazonCoBuyComputerDataset()
    print('train_mask' in ds[0].ndata)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].num_nodes() == ds[0].num_nodes()
    assert new_ds[0].num_edges() == ds[0].num_edges()
    assert 'train_mask' in new_ds[0].ndata
1259
1260
1261
1262
1263
1264
    assert F.array_equal(new_ds.train_idx, F.nonzero_1d(
        new_ds[0].ndata['train_mask']))
    assert F.array_equal(new_ds.val_idx, F.nonzero_1d(
        new_ds[0].ndata['val_mask']))
    assert F.array_equal(new_ds.test_idx, F.nonzero_1d(
        new_ds[0].ndata['test_mask']))
1265
1266
1267
1268
1269
1270
1271
1272

    ds = data.AIFBDataset()
    print('train_mask' in ds[0].nodes['Personen'].data)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].ntypes == ds[0].ntypes
    assert new_ds[0].canonical_etypes == ds[0].canonical_etypes
    assert 'train_mask' in new_ds[0].nodes['Personen'].data
1273
1274
1275
1276
1277
1278
    assert F.array_equal(new_ds.train_idx, F.nonzero_1d(
        new_ds[0].nodes['Personen'].data['train_mask']))
    assert F.array_equal(new_ds.val_idx, F.nonzero_1d(
        new_ds[0].nodes['Personen'].data['val_mask']))
    assert F.array_equal(new_ds.test_idx, F.nonzero_1d(
        new_ds[0].nodes['Personen'].data['test_mask']))
1279
1280
1281
1282
1283
1284
1285
1286

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred2():
    # test proper reprocessing

    # create
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
1287
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.8)
1288
1289
1290
    # read from cache
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
1291
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.8)
1292
1293
1294
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.1, 0.1, 0.8])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.1)
1295
    assert len(ds.train_idx) == int(ds[0].num_nodes() * 0.1)
1296
1297
1298
1299

    # create
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
1300
    assert len(ds.train_idx) == int(ds[0].num_nodes('Personen') * 0.8)
1301
1302
1303
    # read from cache
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
1304
    assert len(ds.train_idx) == int(ds[0].num_nodes('Personen') * 0.8)
1305
1306
1307
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.1, 0.1, 0.8], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.1)
1308
    assert len(ds.train_idx) == int(ds[0].num_nodes('Personen') * 0.1)
1309

Jinjing Zhou's avatar
Jinjing Zhou committed
1310
1311
1312
1313
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_nodepred_ogb():
    from ogb.nodeproppred import DglNodePropPredDataset
    ds = data.AsNodePredDataset(DglNodePropPredDataset("ogbn-arxiv"), split_ratio=None, verbose=True)
1314
1315
1316
1317
1318
    split = DglNodePropPredDataset("ogbn-arxiv").get_idx_split()
    train_idx, val_idx, test_idx = split['train'], split['valid'], split['test']
    assert F.array_equal(ds.train_idx, F.tensor(train_idx))
    assert F.array_equal(ds.val_idx, F.tensor(val_idx))
    assert F.array_equal(ds.test_idx, F.tensor(test_idx))
Jinjing Zhou's avatar
Jinjing Zhou committed
1319
1320
    # force generate new split
    ds = data.AsNodePredDataset(DglNodePropPredDataset("ogbn-arxiv"), split_ratio=[0.7, 0.2, 0.1], verbose=True)
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_linkpred():
    # create
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.8, 0.1, 0.1], neg_ratio=1, verbose=True)
    # Cora has 10556 edges, 10% test edges can be 1057
    assert ds.test_edges[0][0].shape[0] == 1057
    # negative samples, not guaranteed, so the assert is in a relaxed range
    assert 1000 <= ds.test_edges[1][0].shape[0] <= 1057
    # read from cache
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.7, 0.1, 0.2], neg_ratio=2, verbose=True)
    assert ds.test_edges[0][0].shape[0] == 2112
    # negative samples, not guaranteed to be ratio 2, so the assert is in a relaxed range
    assert 4000 < ds.test_edges[1][0].shape[0] <= 4224


@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_linkpred_ogb():
    from ogb.linkproppred import DglLinkPropPredDataset
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=None, verbose=True)
    # original dataset has 46329 test edges
    assert ds.test_edges[0][0].shape[0] == 46329
    # force generate new split
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=[0.7, 0.2, 0.1], verbose=True)
    assert ds.test_edges[0][0].shape[0] == 235812

1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred_csvdataset():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path = os.path.join(test_dir, "test_edges.csv")
        nodes_csv_path = os.path.join(test_dir, "test_nodes.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path)
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path)
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        num_classes = num_nodes
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.arange(num_classes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path, index=False)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        df.to_csv(edges_csv_path, index=False)

1378
        ds = data.CSVDataset(test_dir, force_reload=True)
1379
1380
1381
1382
        assert 'feat' in ds[0].ndata
        assert 'label' in ds[0].ndata
        assert 'train_mask' not in ds[0].ndata
        assert not hasattr(ds[0], 'num_classes')
1383
        new_ds = data.AsNodePredDataset(ds, split_ratio=[0.8, 0.1, 0.1], force_reload=True)
1384
1385
1386
1387
1388
        assert new_ds.num_classes == num_classes
        assert 'feat' in new_ds[0].ndata
        assert 'label' in new_ds[0].ndata
        assert 'train_mask' in new_ds[0].ndata

Mufei Li's avatar
Mufei Li committed
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_graphpred():
    ds = data.GINDataset(name='MUTAG', self_loop=True)
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 188
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.FakeNewsDataset('politifact', 'profile')
    new_ds = data.AsGraphPredDataset(ds, verbose=True)
    assert len(new_ds) == 314
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.QM7bDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 7211
    assert new_ds.num_tasks == 14
    assert new_ds.num_classes is None

    ds = data.QM9Dataset(label_keys=['mu', 'gap'])
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

    ds = data.QM9EdgeDataset(label_keys=['mu', 'alpha'])
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 130831
    assert new_ds.num_tasks == 2
    assert new_ds.num_classes is None

    ds = data.TUDataset('DD')
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.LegacyTUDataset('DD')
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1178
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

    ds = data.BA2MotifDataset()
    new_ds = data.AsGraphPredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1000
    assert new_ds.num_tasks == 1
    assert new_ds.num_classes == 2

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_graphpred_reprocess():
    ds = data.AsGraphPredDataset(data.GINDataset(name='MUTAG', self_loop=True), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.GINDataset(name='MUTAG', self_loop=True), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.GINDataset(name='MUTAG', self_loop=True), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.FakeNewsDataset('politifact', 'profile'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.FakeNewsDataset('politifact', 'profile'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.FakeNewsDataset('politifact', 'profile'), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.QM7bDataset(), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.QM9Dataset(label_keys=['mu', 'gap']), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.QM9Dataset(label_keys=['mu', 'gap']), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.QM9Dataset(label_keys=['mu', 'gap']), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.QM9EdgeDataset(label_keys=['mu', 'alpha']), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.QM9EdgeDataset(label_keys=['mu', 'alpha']), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.QM9EdgeDataset(label_keys=['mu', 'alpha']), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.TUDataset('DD'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.TUDataset('DD'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.TUDataset('DD'), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.LegacyTUDataset('DD'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.LegacyTUDataset('DD'), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.LegacyTUDataset('DD'), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # read from cache
    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.8, 0.1, 0.1])
    assert len(ds.train_idx) == int(len(ds) * 0.8)
    # invalid cache, re-read
    ds = data.AsGraphPredDataset(data.BA2MotifDataset(), [0.1, 0.1, 0.8])
    assert len(ds.train_idx) == int(len(ds) * 0.1)

@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_graphpred_ogb():
    from ogb.graphproppred import DglGraphPropPredDataset
    ds = data.AsGraphPredDataset(DglGraphPropPredDataset('ogbg-molhiv'),
                                 split_ratio=None, verbose=True)
    assert len(ds.train_idx) == 32901
    # force generate new split
    ds = data.AsGraphPredDataset(DglGraphPropPredDataset('ogbg-molhiv'),
                                 split_ratio=[0.6, 0.2, 0.2], verbose=True)
    assert len(ds.train_idx) == 24676

1524
if __name__ == '__main__':
1525
    test_minigc()
1526
    test_gin()
1527
    test_data_hash()
1528
1529
1530
    test_tudataset_regression()
    test_fraud()
    test_fakenews()
1531
    test_extract_archive()
1532
    test_csvdataset()
1533
1534
1535
    test_add_nodepred_split()
    test_as_nodepred1()
    test_as_nodepred2()
1536
    test_as_nodepred_csvdataset()