test_data.py 53.1 KB
Newer Older
1
2
import unittest
import backend as F
3
import numpy as np
4
5
6
import gzip
import tempfile
import os
7
8
9
import pandas as pd
import yaml
import pytest
10
import dgl
11
12
import dgl.data as data
from dgl import DGLError
13
import dgl
14
15

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
16
17
18
19
def test_minigc():
    ds = data.MiniGCDataset(16, 10, 20)
    g, l = list(zip(*ds))
    print(g, l)
20
21
22
23
24
    g1 = ds[0][0]
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.MiniGCDataset(16, 10, 20, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
25
26
27
28
29
30
31
32
33
34

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gin():
    ds_n_graphs = {
        'MUTAG': 188,
        'IMDBBINARY': 1000,
        'IMDBMULTI': 1500,
        'PROTEINS': 1113,
        'PTC': 344,
    }
35
    transform = dgl.AddSelfLoop(allow_duplicate=True)
36
37
38
    for name, n_graphs in ds_n_graphs.items():
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False)
        assert len(ds) == n_graphs, (len(ds), name)
39
40
41
42
        g1 = ds[0][0]
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False, transform=transform)
        g2 = ds[0][0]
        assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
43

44
45
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fraud():
46
47
    transform = dgl.AddSelfLoop(allow_duplicate=True)

48
49
    g = data.FraudDataset('amazon')[0]
    assert g.num_nodes() == 11944
50
51
52
53
    num_edges1 = g.num_edges()
    g2 = data.FraudDataset('amazon', transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - num_edges1 == g.num_nodes() * 3
54
55
56

    g = data.FraudAmazonDataset()[0]
    assert g.num_nodes() == 11944
57
58
59
    g2 = data.FraudAmazonDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
60
61
62

    g = data.FraudYelpDataset()[0]
    assert g.num_nodes() == 45954
63
64
65
    g2 = data.FraudYelpDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
66
67
68

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fakenews():
69
70
    transform = dgl.AddSelfLoop(allow_duplicate=True)

71
72
    ds = data.FakeNewsDataset('politifact', 'bert')
    assert len(ds) == 314
73
74
75
    g = ds[0][0]
    g2 = data.FakeNewsDataset('politifact', 'bert', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
76
77
78

    ds = data.FakeNewsDataset('gossipcop', 'profile')
    assert len(ds) == 5464
79
80
81
    g = ds[0][0]
    g2 = data.FakeNewsDataset('gossipcop', 'profile', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
Jinjing Zhou's avatar
Jinjing Zhou committed
82
83

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
84
def test_tudataset_regression():
Jinjing Zhou's avatar
Jinjing Zhou committed
85
86
    ds = data.TUDataset('ZINC_test', force_reload=True)
    assert len(ds) == 5000
87
    g = ds[0][0]
Jinjing Zhou's avatar
Jinjing Zhou committed
88

89
90
91
92
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.TUDataset('ZINC_test', force_reload=True, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
93

94
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
95
96
97
def test_data_hash():
    class HashTestDataset(data.DGLDataset):
        def __init__(self, hash_key=()):
98
99
100
            super(HashTestDataset, self).__init__(
                'hashtest', hash_key=hash_key)

101
102
103
        def _load(self):
            pass

104
105
106
    a = HashTestDataset((True, 0, '1', (1, 2, 3)))
    b = HashTestDataset((True, 0, '1', (1, 2, 3)))
    c = HashTestDataset((True, 0, '1', (1, 2, 4)))
107
108
109
    assert a.hash == b.hash
    assert a.hash != c.hash

110

111
112
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_citation_graph():
113
114
    transform = dgl.AddSelfLoop(allow_duplicate=True)

115
116
117
118
119
120
    # cora
    g = data.CoraGraphDataset()[0]
    assert g.num_nodes() == 2708
    assert g.num_edges() == 10556
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
121
122
    g2 = data.CoraGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
123
124
125
126
127
128
129

    # Citeseer
    g = data.CiteseerGraphDataset()[0]
    assert g.num_nodes() == 3327
    assert g.num_edges() == 9228
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
130
131
    g2 = data.CiteseerGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
132
133
134
135
136
137
138

    # Pubmed
    g = data.PubmedGraphDataset()[0]
    assert g.num_nodes() == 19717
    assert g.num_edges() == 88651
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
139
140
    g2 = data.PubmedGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
141
142
143
144


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gnn_benchmark():
145
146
    transform = dgl.AddSelfLoop(allow_duplicate=True)

147
148
149
150
151
152
    # AmazonCoBuyComputerDataset
    g = data.AmazonCoBuyComputerDataset()[0]
    assert g.num_nodes() == 13752
    assert g.num_edges() == 491722
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
153
154
    g2 = data.AmazonCoBuyComputerDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
155
156
157
158
159
160
161

    # AmazonCoBuyPhotoDataset
    g = data.AmazonCoBuyPhotoDataset()[0]
    assert g.num_nodes() == 7650
    assert g.num_edges() == 238163
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
162
163
    g2 = data.AmazonCoBuyPhotoDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
164
165
166
167
168
169
170

    # CoauthorPhysicsDataset
    g = data.CoauthorPhysicsDataset()[0]
    assert g.num_nodes() == 34493
    assert g.num_edges() == 495924
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
171
172
    g2 = data.CoauthorPhysicsDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
173
174
175
176
177
178
179

    # CoauthorCSDataset
    g = data.CoauthorCSDataset()[0]
    assert g.num_nodes() == 18333
    assert g.num_edges() == 163788
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
180
181
    g2 = data.CoauthorCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
182
183
184
185
186
187
188

    # CoraFullDataset
    g = data.CoraFullDataset()[0]
    assert g.num_nodes() == 19793
    assert g.num_edges() == 126842
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
189
190
    g2 = data.CoraFullDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
191
192
193
194
195
196
197
198
199
200
201


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_reddit():
    # RedditDataset
    g = data.RedditDataset()[0]
    assert g.num_nodes() == 232965
    assert g.num_edges() == 114615892
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

202
203
204
205
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.RedditDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_extract_archive():
    # gzip
    with tempfile.TemporaryDirectory() as src_dir:
        gz_file = 'gz_archive'
        gz_path = os.path.join(src_dir, gz_file + '.gz')
        content = b"test extract archive gzip"
        with gzip.open(gz_path, 'wb') as f:
            f.write(content)
        with tempfile.TemporaryDirectory() as dst_dir:
            data.utils.extract_archive(gz_path, dst_dir, overwrite=True)
            assert os.path.exists(os.path.join(dst_dir, gz_file))


221
def _test_construct_graphs_homo():
222
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    # node_ids could be non-sorted, duplicated, not labeled from 0 to num_nodes-1
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    num_dup_nodes = int(num_nodes*0.2)
    node_ids = np.random.choice(
        np.arange(num_nodes*2), size=num_nodes, replace=False)
    assert len(node_ids) == num_nodes
    np.random.shuffle(node_ids)
    node_ids = np.hstack((node_ids, node_ids[:num_dup_nodes]))
    t_ndata = {'feat': np.random.rand(num_nodes+num_dup_nodes, num_dims),
               'label': np.random.randint(2, size=num_nodes+num_dup_nodes)}
    _, u_indices = np.unique(node_ids, return_index=True)
    ndata = {'feat': t_ndata['feat'][u_indices],
             'label': t_ndata['label'][u_indices]}
238
    node_data = NodeData(node_ids, t_ndata)
239
240
241
242
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    edata = {'feat': np.random.rand(
        num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
243
244
    edge_data = EdgeData(src_ids, dst_ids, edata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == num_nodes
    assert g.num_edges() == num_edges

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
            assert F.array_equal(F.tensor(value), rhs[key])
    assert_data(ndata, g.ndata)
    assert_data(edata, g.edata)


def _test_construct_graphs_hetero():
262
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    # node_ids could be non-sorted, duplicated, not labeled from 0 to num_nodes-1
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    num_dup_nodes = int(num_nodes*0.2)
    ntypes = ['user', 'item']
    node_data = []
    node_ids_dict = {}
    ndata_dict = {}
    for ntype in ntypes:
        node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        assert len(node_ids) == num_nodes
        np.random.shuffle(node_ids)
        node_ids = np.hstack((node_ids, node_ids[:num_dup_nodes]))
        t_ndata = {'feat': np.random.rand(num_nodes+num_dup_nodes, num_dims),
                   'label': np.random.randint(2, size=num_nodes+num_dup_nodes)}
        _, u_indices = np.unique(node_ids, return_index=True)
        ndata = {'feat': t_ndata['feat'][u_indices],
                 'label': t_ndata['label'][u_indices]}
283
        node_data.append(NodeData(node_ids, t_ndata, type=ntype))
284
285
286
287
288
289
290
291
292
293
        node_ids_dict[ntype] = node_ids
        ndata_dict[ntype] = ndata
    etypes = [('user', 'follow', 'user'), ('user', 'like', 'item')]
    edge_data = []
    edata_dict = {}
    for src_type, e_type, dst_type in etypes:
        src_ids = np.random.choice(node_ids_dict[src_type], size=num_edges)
        dst_ids = np.random.choice(node_ids_dict[dst_type], size=num_edges)
        edata = {'feat': np.random.rand(
            num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
294
        edge_data.append(EdgeData(src_ids, dst_ids, edata,
295
296
                         type=(src_type, e_type, dst_type)))
        edata_dict[(src_type, e_type, dst_type)] = edata
297
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
    assert g.num_nodes() == num_nodes*len(ntypes)
    assert g.num_edges() == num_edges*len(etypes)

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
            assert F.array_equal(F.tensor(value), rhs[key])
    for ntype in g.ntypes:
        assert g.num_nodes(ntype) == num_nodes
        assert_data(ndata_dict[ntype], g.nodes[ntype].data)
    for etype in g.canonical_etypes:
        assert g.num_edges(etype) == num_edges
        assert_data(edata_dict[etype], g.edges[etype].data)


def _test_construct_graphs_multiple():
319
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData, DGLGraphConstructor
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    num_nodes = 100
    num_edges = 1000
    num_graphs = 10
    num_dims = 3
    node_ids = np.array([], dtype=np.int)
    src_ids = np.array([], dtype=np.int)
    dst_ids = np.array([], dtype=np.int)
    ngraph_ids = np.array([], dtype=np.int)
    egraph_ids = np.array([], dtype=np.int)
    u_indices = np.array([], dtype=np.int)
    for i in range(num_graphs):
        l_node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        node_ids = np.append(node_ids, l_node_ids)
        _, l_u_indices = np.unique(l_node_ids, return_index=True)
        u_indices = np.append(u_indices, l_u_indices)
        ngraph_ids = np.append(ngraph_ids, np.full(num_nodes, i))
        src_ids = np.append(src_ids, np.random.choice(
            l_node_ids, size=num_edges))
        dst_ids = np.append(dst_ids, np.random.choice(
            l_node_ids, size=num_edges))
        egraph_ids = np.append(egraph_ids, np.full(num_edges, i))
    ndata = {'feat': np.random.rand(num_nodes*num_graphs, num_dims),
             'label': np.random.randint(2, size=num_nodes*num_graphs)}
344
    node_data = NodeData(node_ids, ndata, graph_id=ngraph_ids)
345
346
    edata = {'feat': np.random.rand(
        num_edges*num_graphs, num_dims), 'label': np.random.randint(2, size=num_edges*num_graphs)}
347
    edge_data = EdgeData(src_ids, dst_ids, edata, graph_id=egraph_ids)
348
349
    gdata = {'feat': np.random.rand(num_graphs, num_dims),
             'label': np.random.randint(2, size=num_graphs)}
350
351
    graph_data = GraphData(np.arange(num_graphs), gdata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        node_data, edge_data, graph_data)
    assert len(graphs) == num_graphs
    assert len(data_dict) == len(gdata)
    for k, v in data_dict.items():
        assert F.array_equal(F.tensor(gdata[k]), v)
    for i, g in enumerate(graphs):
        assert g.is_homogeneous
        assert g.num_nodes() == num_nodes
        assert g.num_edges() == num_edges

        def assert_data(lhs, rhs, size, node=False):
            for key, value in lhs.items():
                assert key in rhs
                value = value[i*size:(i+1)*size]
                if node:
                    indices = u_indices[i*size:(i+1)*size]
                    value = value[indices]
                assert F.array_equal(F.tensor(value), rhs[key])
        assert_data(ndata, g.ndata, num_nodes, node=True)
        assert_data(edata, g.edata, num_edges)

    # Graph IDs found in node/edge CSV but not in graph CSV
374
    graph_data = GraphData(np.arange(num_graphs-2), {})
375
376
    expect_except = False
    try:
377
        _, _ = DGLGraphConstructor.construct_graphs(
378
379
380
381
382
383
384
            node_data, edge_data, graph_data)
    except:
        expect_except = True
    assert expect_except


def _test_DefaultDataParser():
385
    from dgl.data.csv_dataset_base import DefaultDataParser
386
387
388
389
390
391
392
393
394
395
396
397
398
    # common csv
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        num_nodes = 5
        num_labels = 3
        num_dims = 2
        node_id = np.arange(num_nodes)
        label = np.random.randint(num_labels, size=num_nodes)
        feat = np.random.rand(num_nodes, num_dims)
        df = pd.DataFrame({'node_id': node_id, 'label': label,
                           'feat': [line.tolist() for line in feat],
                           })
        df.to_csv(csv_path, index=False)
399
        dp = DefaultDataParser()
400
401
402
403
404
405
406
407
408
409
410
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert np.array_equal(node_id, dt['node_id'])
        assert np.array_equal(label, dt['label'])
        assert np.array_equal(feat, dt['feat'])
    # string consists of non-numeric values
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': ['a', 'b', 'c'],
                           })
        df.to_csv(csv_path, index=False)
411
        dp = DefaultDataParser()
412
413
414
415
416
417
418
419
420
421
422
423
424
        df = pd.read_csv(csv_path)
        expect_except = False
        try:
            dt = dp(df)
        except:
            expect_except = True
        assert expect_except
    # csv has index column which is ignored as it's unnamed
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': [1, 2, 3],
                           })
        df.to_csv(csv_path)
425
        dp = DefaultDataParser()
426
427
428
429
430
431
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert len(dt) == 1


def _test_load_yaml_with_sanity_check():
432
    from dgl.data.csv_dataset_base import load_yaml_with_sanity_check
433
434
435
436
437
438
439
    with tempfile.TemporaryDirectory() as test_dir:
        yaml_path = os.path.join(test_dir, 'meta.yaml')
        # workable but meaningless usually
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
440
        meta = load_yaml_with_sanity_check(yaml_path)
441
442
443
444
445
446
447
448
449
450
451
452
        assert meta.version == '1.0.0'
        assert meta.dataset_name == 'default'
        assert meta.separator == ','
        assert len(meta.node_data) == 0
        assert len(meta.edge_data) == 0
        assert meta.graph_data is None
        # minimum with required fields only
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
453
        meta = load_yaml_with_sanity_check(yaml_path)
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        for ndata in meta.node_data:
            assert ndata.file_name == 'nodes.csv'
            assert ndata.ntype == '_V'
            assert ndata.graph_id_field == 'graph_id'
            assert ndata.node_id_field == 'node_id'
        for edata in meta.edge_data:
            assert edata.file_name == 'edges.csv'
            assert edata.etype == ['_V', '_E', '_V']
            assert edata.graph_id_field == 'graph_id'
            assert edata.src_id_field == 'src_id'
            assert edata.dst_id_field == 'dst_id'
        # optional fields are specified
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default',
                     'separator': '|',
                     'node_data': [{'file_name': 'nodes.csv', 'ntype': 'user', 'graph_id_field': 'xxx', 'node_id_field': 'xxx'}],
                     'edge_data': [{'file_name': 'edges.csv', 'etype': ['user', 'follow', 'user'], 'graph_id_field':'xxx', 'src_id_field':'xxx', 'dst_id_field':'xxx'}],
                     'graph_data': {'file_name': 'graph.csv', 'graph_id_field': 'xxx'}
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
474
        meta = load_yaml_with_sanity_check(yaml_path)
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        assert len(meta.node_data) == 1
        ndata = meta.node_data[0]
        assert ndata.ntype == 'user'
        assert ndata.graph_id_field == 'xxx'
        assert ndata.node_id_field == 'xxx'
        assert len(meta.edge_data) == 1
        edata = meta.edge_data[0]
        assert edata.etype == ['user', 'follow', 'user']
        assert edata.graph_id_field == 'xxx'
        assert edata.src_id_field == 'xxx'
        assert edata.dst_id_field == 'xxx'
        assert meta.graph_data is not None
        assert meta.graph_data.file_name == 'graph.csv'
        assert meta.graph_data.graph_id_field == 'xxx'
        # some required fields are missing
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        for field in yaml_data.keys():
            ydata = {k: v for k, v in yaml_data.items()}
            ydata.pop(field)
            with open(yaml_path, 'w') as f:
                yaml.dump(ydata, f, sort_keys=False)
            expect_except = False
            try:
499
                meta = load_yaml_with_sanity_check(yaml_path)
500
501
502
503
504
505
506
507
508
509
510
            except:
                expect_except = True
            assert expect_except
        # inapplicable version
        yaml_data = {'version': '0.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes_0.csv'}],
                     'edge_data': [{'file_name': 'edges_0.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
511
            meta = load_yaml_with_sanity_check(yaml_path)
512
513
514
515
516
517
518
519
520
521
522
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate node types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}, {'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
523
            meta = load_yaml_with_sanity_check(yaml_path)
524
525
526
527
528
529
530
531
532
533
534
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate edge types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}, {'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
535
            meta = load_yaml_with_sanity_check(yaml_path)
536
537
538
539
540
541
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_node_data_from_csv():
542
    from dgl.data.csv_dataset_base import MetaNode, NodeData, DefaultDataParser
543
544
545
546
547
548
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        # minimum
        df = pd.DataFrame({'node_id': np.arange(num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
549
550
551
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
552
553
554
555
556
557
558
559
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 0

        # common case
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                          'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
560
561
562
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
563
564
565
566
567
568
569
570
571
572
573
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(np.full(num_nodes, 0), node_data.graph_id)
        assert node_data.type == '_V'

        # add more fields into nodes.csv
        df = pd.DataFrame({'node_id': np.arange(num_nodes), 'label': np.random.randint(
            3, size=num_nodes), 'graph_id': np.full(num_nodes, 1)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
574
575
576
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
577
578
579
580
581
582
583
584
585
586
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(df['graph_id'], node_data.graph_id)
        assert node_data.type == '_V'

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
587
        meta_node = MetaNode(file_name=csv_path)
588
589
        expect_except = False
        try:
590
591
            NodeData.load_from_csv(
                meta_node, DefaultDataParser())
592
593
594
595
596
597
        except:
            expect_except = True
        assert expect_except


def _test_load_edge_data_from_csv():
598
    from dgl.data.csv_dataset_base import MetaEdge, EdgeData, DefaultDataParser
599
600
601
602
603
604
605
606
607
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        num_edges = 1000
        # minimum
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
608
609
610
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
611
612
613
614
615
616
617
618
619
620
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 0

        # common case
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
621
622
623
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 1
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(np.full(num_edges, 0), edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # add more fields into edges.csv
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'graph_id': np.arange(num_edges),
                           'feat': np.random.randint(3, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
639
640
641
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
642
643
644
645
646
647
648
649
650
651
652
653
654
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 2
        assert np.array_equal(df['feat'], edge_data.data['feat'])
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(df['graph_id'], edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # required headers are missing
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
655
        meta_edge = MetaEdge(file_name=csv_path)
656
657
        expect_except = False
        try:
658
659
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
660
661
662
663
664
665
666
        except DGLError:
            expect_except = True
        assert expect_except
        df = pd.DataFrame({'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
667
        meta_edge = MetaEdge(file_name=csv_path)
668
669
        expect_except = False
        try:
670
671
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
672
673
674
675
676
677
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_graph_data_from_csv():
678
    from dgl.data.csv_dataset_base import MetaGraph, GraphData, DefaultDataParser
679
680
681
682
683
684
    with tempfile.TemporaryDirectory() as test_dir:
        num_graphs = 100
        # minimum
        df = pd.DataFrame({'graph_id': np.arange(num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
685
686
687
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
688
689
690
691
692
693
694
695
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 0

        # common case
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                          'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
696
697
698
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
699
700
701
702
703
704
705
706
707
708
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 1
        assert np.array_equal(df['label'], graph_data.data['label'])

        # add more fields into graph.csv
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                           'feat': np.random.randint(3, size=num_graphs),
                           'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
709
710
711
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
712
713
714
715
716
717
718
719
720
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 2
        assert np.array_equal(df['feat'], graph_data.data['feat'])
        assert np.array_equal(df['label'], graph_data.data['label'])

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
721
        meta_graph = MetaGraph(file_name=csv_path)
722
723
        expect_except = False
        try:
724
725
            GraphData.load_from_csv(
                meta_graph, DefaultDataParser())
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        except DGLError:
            expect_except = True
        assert expect_except


def _test_DGLCSVDataset_single():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges, num_dims)
        label_edata = np.random.randint(2, size=num_edges)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)

        # load CSVDataset
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
782
            csv_dataset = data.DGLCSVDataset(
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == 1
            g = csv_dataset[0]
            assert not g.is_homogeneous
            assert csv_dataset.has_cache()
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                assert F.array_equal(F.tensor(feat_ndata),
                                     g.nodes[ntype].data['feat'])
                assert np.array_equal(label_ndata,
                                      F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                assert F.array_equal(F.tensor(feat_edata),
                                     g.edges[etype].data['feat'])
                assert np.array_equal(label_edata,
                                      F.asnumpy(g.edges[etype].data['label']))


def _test_DGLCSVDataset_multiple():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes*num_graphs, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges*num_graphs, num_dims)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        feat_gdata = np.random.rand(num_graphs, num_dims)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'feat': [line.tolist() for line in feat_gdata],
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

        # load CSVDataset with default node/edge/graph_data_parser
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
865
            csv_dataset = data.DGLCSVDataset(
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == num_graphs
            assert csv_dataset.has_cache()
            assert len(csv_dataset.data) == 2
            assert 'feat' in csv_dataset.data
            assert 'label' in csv_dataset.data
            assert F.array_equal(F.tensor(feat_gdata),
                                 csv_dataset.data['feat'])
            for i, (g, label) in enumerate(csv_dataset):
                assert not g.is_homogeneous
                assert F.asnumpy(label) == label_gdata[i]
                for ntype in g.ntypes:
                    assert g.num_nodes(ntype) == num_nodes
                    assert F.array_equal(F.tensor(feat_ndata[i*num_nodes:(i+1)*num_nodes]),
                                         g.nodes[ntype].data['feat'])
                    assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes],
                                          F.asnumpy(g.nodes[ntype].data['label']))
                for etype in g.etypes:
                    assert g.num_edges(etype) == num_edges
                    assert F.array_equal(F.tensor(feat_edata[i*num_edges:(i+1)*num_edges]),
                                         g.edges[etype].data['feat'])
                    assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges],
                                          F.asnumpy(g.edges[etype].data['label']))


def _test_DGLCSVDataset_customized_data_parser():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

        class CustDataParser:
            def __call__(self, df):
                data = {}
                for header in df:
                    dt = df[header].to_numpy().squeeze()
                    if header == 'label':
                        dt += 2
                    data[header] = dt
                return data
        # load CSVDataset with customized node/edge/graph_data_parser
951
        csv_dataset = data.DGLCSVDataset(
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
            test_dir, node_data_parser={'user': CustDataParser()}, edge_data_parser={('user', 'like', 'item'): CustDataParser()}, graph_data_parser=CustDataParser())
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
        assert 'label' in csv_dataset.data
        for i, (g, label) in enumerate(csv_dataset):
            assert not g.is_homogeneous
            assert F.asnumpy(label) == label_gdata[i] + 2
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2 if ntype == 'user' else 0
                assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes]+offset,
                                      F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2 if etype == 'like' else 0
                assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges]+offset,
                                      F.asnumpy(g.edges[etype].data['label']))


def _test_NodeEdgeGraphData():
972
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData
973
974
975
    # NodeData basics
    num_nodes = 100
    node_ids = np.arange(num_nodes, dtype=np.float)
976
    ndata = NodeData(node_ids, {})
977
978
979
980
981
982
983
984
    assert ndata.id.dtype == np.int64
    assert np.array_equal(ndata.id, node_ids.astype(np.int64))
    assert len(ndata.data) == 0
    assert ndata.type == '_V'
    assert np.array_equal(ndata.graph_id, np.full(num_nodes, 0))
    # NodeData more
    data = {'feat': np.random.rand(num_nodes, 3)}
    graph_id = np.arange(num_nodes)
985
    ndata = NodeData(node_ids, data, type='user', graph_id=graph_id)
986
987
988
989
990
991
992
993
994
    assert ndata.type == 'user'
    assert np.array_equal(ndata.graph_id, graph_id)
    assert len(ndata.data) == len(data)
    for k, v in data.items():
        assert k in ndata.data
        assert np.array_equal(ndata.data[k], v)
    # NodeData except
    expect_except = False
    try:
995
        NodeData(np.arange(num_nodes), {'feat': np.random.rand(
996
997
998
999
1000
1001
1002
1003
1004
1005
            num_nodes+1, 3)}, graph_id=np.arange(num_nodes-1))
    except:
        expect_except = True
    assert expect_except

    # EdgeData basics
    num_nodes = 100
    num_edges = 1000
    src_ids = np.random.randint(num_nodes, size=num_edges)
    dst_ids = np.random.randint(num_nodes, size=num_edges)
1006
    edata = EdgeData(src_ids, dst_ids, {})
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == ('_V', '_E', '_V')
    assert len(edata.data) == 0
    assert np.array_equal(edata.graph_id, np.full(num_edges, 0))
    # EdageData more
    src_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    dst_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    data = {'feat': np.random.rand(num_edges, 3)}
    etype = ('user', 'like', 'item')
    graph_ids = np.arange(num_edges)
1018
    edata = EdgeData(src_ids, dst_ids, data,
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
                            type=etype, graph_id=graph_ids)
    assert edata.src.dtype == np.int64
    assert edata.dst.dtype == np.int64
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == etype
    assert len(edata.data) == len(data)
    for k, v in data.items():
        assert k in edata.data
        assert np.array_equal(edata.data[k], v)
    assert np.array_equal(edata.graph_id, graph_ids)
    # EdgeData except
    expect_except = False
    try:
1033
        EdgeData(np.arange(num_edges), np.arange(
1034
1035
1036
1037
1038
1039
1040
1041
            num_edges+1), {'feat': np.random.rand(num_edges-1, 3)}, graph_id=np.arange(num_edges+2))
    except:
        expect_except = True
    assert expect_except

    # GraphData basics
    num_graphs = 10
    graph_ids = np.arange(num_graphs)
1042
    gdata = GraphData(graph_ids, {})
1043
1044
1045
1046
1047
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == 0
    # GraphData more
    graph_ids = np.arange(num_graphs).astype(np.float)
    data = {'feat': np.random.rand(num_graphs, 3)}
1048
    gdata = GraphData(graph_ids, data)
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
    assert gdata.graph_id.dtype == np.int64
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == len(data)
    for k, v in data.items():
        assert k in gdata.data
        assert np.array_equal(gdata.data[k], v)


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_csvdataset():
    _test_NodeEdgeGraphData()
    _test_construct_graphs_homo()
    _test_construct_graphs_hetero()
    _test_construct_graphs_multiple()
    _test_DefaultDataParser()
    _test_load_yaml_with_sanity_check()
    _test_load_node_data_from_csv()
    _test_load_edge_data_from_csv()
    _test_load_graph_data_from_csv()
    _test_DGLCSVDataset_single()
    _test_DGLCSVDataset_multiple()
    _test_DGLCSVDataset_customized_data_parser()

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_add_nodepred_split():
    dataset = data.AmazonCoBuyComputerDataset()
    print('train_mask' in dataset[0].ndata)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1])
    assert 'train_mask' in dataset[0].ndata

    dataset = data.AIFBDataset()
    print('train_mask' in dataset[0].nodes['Publikationen'].data)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1], ntype='Publikationen')
    assert 'train_mask' in dataset[0].nodes['Publikationen'].data

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred1():
    ds = data.AmazonCoBuyComputerDataset()
    print('train_mask' in ds[0].ndata)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].num_nodes() == ds[0].num_nodes()
    assert new_ds[0].num_edges() == ds[0].num_edges()
    assert 'train_mask' in new_ds[0].ndata

    ds = data.AIFBDataset()
    print('train_mask' in ds[0].nodes['Personen'].data)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].ntypes == ds[0].ntypes
    assert new_ds[0].canonical_etypes == ds[0].canonical_etypes
    assert 'train_mask' in new_ds[0].nodes['Personen'].data

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred2():
    # test proper reprocessing

    # create
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
    # read from cache
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.1, 0.1, 0.8])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.1)

    # create
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
    # read from cache
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.1, 0.1, 0.8], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.1)
1125

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_linkpred():
    # create
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.8, 0.1, 0.1], neg_ratio=1, verbose=True)
    # Cora has 10556 edges, 10% test edges can be 1057
    assert ds.test_edges[0][0].shape[0] == 1057
    # negative samples, not guaranteed, so the assert is in a relaxed range
    assert 1000 <= ds.test_edges[1][0].shape[0] <= 1057
    # read from cache
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.7, 0.1, 0.2], neg_ratio=2, verbose=True)
    assert ds.test_edges[0][0].shape[0] == 2112
    # negative samples, not guaranteed to be ratio 2, so the assert is in a relaxed range
    assert 4000 < ds.test_edges[1][0].shape[0] <= 4224


@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_linkpred_ogb():
    from ogb.linkproppred import DglLinkPropPredDataset
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=None, verbose=True)
    # original dataset has 46329 test edges
    assert ds.test_edges[0][0].shape[0] == 46329
    # force generate new split
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=[0.7, 0.2, 0.1], verbose=True)
    assert ds.test_edges[0][0].shape[0] == 235812

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred_csvdataset():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path = os.path.join(test_dir, "test_edges.csv")
        nodes_csv_path = os.path.join(test_dir, "test_nodes.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path)
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path)
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        num_classes = num_nodes
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.arange(num_classes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path, index=False)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        df.to_csv(edges_csv_path, index=False)

        ds = data.DGLCSVDataset(test_dir, force_reload=True)
        assert 'feat' in ds[0].ndata
        assert 'label' in ds[0].ndata
        assert 'train_mask' not in ds[0].ndata
        assert not hasattr(ds[0], 'num_classes')
1189
        new_ds = data.AsNodePredDataset(ds, split_ratio=[0.8, 0.1, 0.1], force_reload=True)
1190
1191
1192
1193
1194
        assert new_ds.num_classes == num_classes
        assert 'feat' in new_ds[0].ndata
        assert 'label' in new_ds[0].ndata
        assert 'train_mask' in new_ds[0].ndata

1195
if __name__ == '__main__':
1196
    test_minigc()
1197
    test_gin()
1198
    test_data_hash()
1199
1200
1201
    test_tudataset_regression()
    test_fraud()
    test_fakenews()
1202
    test_extract_archive()
1203
    test_csvdataset()
1204
1205
1206
    test_add_nodepred_split()
    test_as_nodepred1()
    test_as_nodepred2()
1207
    test_as_nodepred_csvdataset()