test_data.py 4.41 KB
Newer Older
1
import dgl.data as data
2
3
import unittest
import backend as F
4
import numpy as np
5

6
7

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
8
9
10
11
12
def test_minigc():
    ds = data.MiniGCDataset(16, 10, 20)
    g, l = list(zip(*ds))
    print(g, l)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gin():
    ds_n_graphs = {
        'MUTAG': 188,
        'IMDBBINARY': 1000,
        'IMDBMULTI': 1500,
        'PROTEINS': 1113,
        'PTC': 344,
    }
    for name, n_graphs in ds_n_graphs.items():
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False)
        assert len(ds) == n_graphs, (len(ds), name)


28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fraud():
    g = data.FraudDataset('amazon')[0]
    assert g.num_nodes() == 11944

    g = data.FraudAmazonDataset()[0]
    assert g.num_nodes() == 11944

    g = data.FraudYelpDataset()[0]
    assert g.num_nodes() == 45954


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fakenews():
    ds = data.FakeNewsDataset('politifact', 'bert')
    assert len(ds) == 314

    ds = data.FakeNewsDataset('gossipcop', 'profile')
    assert len(ds) == 5464

Jinjing Zhou's avatar
Jinjing Zhou committed
48
49
50
51
52
53

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_tudataset_regression():    
    ds = data.TUDataset('ZINC_test', force_reload=True)
    assert len(ds) == 5000

54

55
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
56
57
58
59
60
61
62
63
64
65
66
67
68
def test_data_hash():
    class HashTestDataset(data.DGLDataset):
        def __init__(self, hash_key=()):
            super(HashTestDataset, self).__init__('hashtest', hash_key=hash_key)
        def _load(self):
            pass

    a = HashTestDataset((True, 0, '1', (1,2,3)))
    b = HashTestDataset((True, 0, '1', (1,2,3)))
    c = HashTestDataset((True, 0, '1', (1,2,4)))
    assert a.hash == b.hash
    assert a.hash != c.hash

69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_citation_graph():
    # cora
    g = data.CoraGraphDataset()[0]
    assert g.num_nodes() == 2708
    assert g.num_edges() == 10556
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # Citeseer
    g = data.CiteseerGraphDataset()[0]
    assert g.num_nodes() == 3327
    assert g.num_edges() == 9228
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # Pubmed
    g = data.PubmedGraphDataset()[0]
    assert g.num_nodes() == 19717
    assert g.num_edges() == 88651
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gnn_benchmark():
    # AmazonCoBuyComputerDataset
    g = data.AmazonCoBuyComputerDataset()[0]
    assert g.num_nodes() == 13752
    assert g.num_edges() == 491722
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # AmazonCoBuyPhotoDataset
    g = data.AmazonCoBuyPhotoDataset()[0]
    assert g.num_nodes() == 7650
    assert g.num_edges() == 238163
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # CoauthorPhysicsDataset
    g = data.CoauthorPhysicsDataset()[0]
    assert g.num_nodes() == 34493
    assert g.num_edges() == 495924
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # CoauthorCSDataset
    g = data.CoauthorCSDataset()[0]
    assert g.num_nodes() == 18333
    assert g.num_edges() == 163788
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

    # CoraFullDataset
    g = data.CoraFullDataset()[0]
    assert g.num_nodes() == 19793
    assert g.num_edges() == 126842
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_reddit():
    # RedditDataset
    g = data.RedditDataset()[0]
    assert g.num_nodes() == 232965
    assert g.num_edges() == 114615892
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))


142
if __name__ == '__main__':
143
    test_minigc()
144
    test_gin()
145
    test_data_hash()
146
147
148
    test_tudataset_regression()
    test_fraud()
    test_fakenews()