test_data.py 55.4 KB
Newer Older
1
2
import unittest
import backend as F
3
import numpy as np
4
5
6
import gzip
import tempfile
import os
7
8
9
import pandas as pd
import yaml
import pytest
10
import dgl
11
12
import dgl.data as data
from dgl import DGLError
13
import dgl
14
15

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
16
17
18
19
def test_minigc():
    ds = data.MiniGCDataset(16, 10, 20)
    g, l = list(zip(*ds))
    print(g, l)
20
21
22
23
24
    g1 = ds[0][0]
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.MiniGCDataset(16, 10, 20, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
25
26
27
28
29
30
31
32
33
34

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gin():
    ds_n_graphs = {
        'MUTAG': 188,
        'IMDBBINARY': 1000,
        'IMDBMULTI': 1500,
        'PROTEINS': 1113,
        'PTC': 344,
    }
35
    transform = dgl.AddSelfLoop(allow_duplicate=True)
36
37
38
    for name, n_graphs in ds_n_graphs.items():
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False)
        assert len(ds) == n_graphs, (len(ds), name)
39
40
41
42
        g1 = ds[0][0]
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False, transform=transform)
        g2 = ds[0][0]
        assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
43

44
45
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fraud():
46
47
    transform = dgl.AddSelfLoop(allow_duplicate=True)

48
49
    g = data.FraudDataset('amazon')[0]
    assert g.num_nodes() == 11944
50
51
52
53
    num_edges1 = g.num_edges()
    g2 = data.FraudDataset('amazon', transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - num_edges1 == g.num_nodes() * 3
54
55
56

    g = data.FraudAmazonDataset()[0]
    assert g.num_nodes() == 11944
57
58
59
    g2 = data.FraudAmazonDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
60
61
62

    g = data.FraudYelpDataset()[0]
    assert g.num_nodes() == 45954
63
64
65
    g2 = data.FraudYelpDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
66
67
68

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fakenews():
69
70
    transform = dgl.AddSelfLoop(allow_duplicate=True)

71
72
    ds = data.FakeNewsDataset('politifact', 'bert')
    assert len(ds) == 314
73
74
75
    g = ds[0][0]
    g2 = data.FakeNewsDataset('politifact', 'bert', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
76
77
78

    ds = data.FakeNewsDataset('gossipcop', 'profile')
    assert len(ds) == 5464
79
80
81
    g = ds[0][0]
    g2 = data.FakeNewsDataset('gossipcop', 'profile', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
Jinjing Zhou's avatar
Jinjing Zhou committed
82
83

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
84
def test_tudataset_regression():
Jinjing Zhou's avatar
Jinjing Zhou committed
85
86
    ds = data.TUDataset('ZINC_test', force_reload=True)
    assert len(ds) == 5000
87
    g = ds[0][0]
Jinjing Zhou's avatar
Jinjing Zhou committed
88

89
90
91
92
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.TUDataset('ZINC_test', force_reload=True, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
93

94
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
95
96
97
def test_data_hash():
    class HashTestDataset(data.DGLDataset):
        def __init__(self, hash_key=()):
98
99
100
            super(HashTestDataset, self).__init__(
                'hashtest', hash_key=hash_key)

101
102
103
        def _load(self):
            pass

104
105
106
    a = HashTestDataset((True, 0, '1', (1, 2, 3)))
    b = HashTestDataset((True, 0, '1', (1, 2, 3)))
    c = HashTestDataset((True, 0, '1', (1, 2, 4)))
107
108
109
    assert a.hash == b.hash
    assert a.hash != c.hash

110

111
112
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_citation_graph():
113
114
    transform = dgl.AddSelfLoop(allow_duplicate=True)

115
116
117
118
119
120
    # cora
    g = data.CoraGraphDataset()[0]
    assert g.num_nodes() == 2708
    assert g.num_edges() == 10556
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
121
122
    g2 = data.CoraGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
123
124
125
126
127
128
129

    # Citeseer
    g = data.CiteseerGraphDataset()[0]
    assert g.num_nodes() == 3327
    assert g.num_edges() == 9228
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
130
131
    g2 = data.CiteseerGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
132
133
134
135
136
137
138

    # Pubmed
    g = data.PubmedGraphDataset()[0]
    assert g.num_nodes() == 19717
    assert g.num_edges() == 88651
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
139
140
    g2 = data.PubmedGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
141
142
143
144


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gnn_benchmark():
145
146
    transform = dgl.AddSelfLoop(allow_duplicate=True)

147
148
149
150
151
152
    # AmazonCoBuyComputerDataset
    g = data.AmazonCoBuyComputerDataset()[0]
    assert g.num_nodes() == 13752
    assert g.num_edges() == 491722
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
153
154
    g2 = data.AmazonCoBuyComputerDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
155
156
157
158
159
160
161

    # AmazonCoBuyPhotoDataset
    g = data.AmazonCoBuyPhotoDataset()[0]
    assert g.num_nodes() == 7650
    assert g.num_edges() == 238163
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
162
163
    g2 = data.AmazonCoBuyPhotoDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
164
165
166
167
168
169
170

    # CoauthorPhysicsDataset
    g = data.CoauthorPhysicsDataset()[0]
    assert g.num_nodes() == 34493
    assert g.num_edges() == 495924
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
171
172
    g2 = data.CoauthorPhysicsDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
173
174
175
176
177
178
179

    # CoauthorCSDataset
    g = data.CoauthorCSDataset()[0]
    assert g.num_nodes() == 18333
    assert g.num_edges() == 163788
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
180
181
    g2 = data.CoauthorCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
182
183
184
185
186
187
188

    # CoraFullDataset
    g = data.CoraFullDataset()[0]
    assert g.num_nodes() == 19793
    assert g.num_edges() == 126842
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
189
190
    g2 = data.CoraFullDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
191
192
193
194
195
196
197
198
199
200
201


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_reddit():
    # RedditDataset
    g = data.RedditDataset()[0]
    assert g.num_nodes() == 232965
    assert g.num_edges() == 114615892
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

202
203
204
205
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.RedditDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_extract_archive():
    # gzip
    with tempfile.TemporaryDirectory() as src_dir:
        gz_file = 'gz_archive'
        gz_path = os.path.join(src_dir, gz_file + '.gz')
        content = b"test extract archive gzip"
        with gzip.open(gz_path, 'wb') as f:
            f.write(content)
        with tempfile.TemporaryDirectory() as dst_dir:
            data.utils.extract_archive(gz_path, dst_dir, overwrite=True)
            assert os.path.exists(os.path.join(dst_dir, gz_file))


221
def _test_construct_graphs_homo():
222
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
223
    # node_id/src_id/dst_id could be non-sorted, duplicated, non-numeric.
224
225
226
227
228
229
230
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    num_dup_nodes = int(num_nodes*0.2)
    node_ids = np.random.choice(
        np.arange(num_nodes*2), size=num_nodes, replace=False)
    assert len(node_ids) == num_nodes
231
    # to be non-sorted
232
    np.random.shuffle(node_ids)
233
    # to be duplicated
234
    node_ids = np.hstack((node_ids, node_ids[:num_dup_nodes]))
235
236
    # to be non-numeric
    node_ids = ['id_{}'.format(id) for id in node_ids]
237
238
239
240
241
    t_ndata = {'feat': np.random.rand(num_nodes+num_dup_nodes, num_dims),
               'label': np.random.randint(2, size=num_nodes+num_dup_nodes)}
    _, u_indices = np.unique(node_ids, return_index=True)
    ndata = {'feat': t_ndata['feat'][u_indices],
             'label': t_ndata['label'][u_indices]}
242
    node_data = NodeData(node_ids, t_ndata)
243
244
245
246
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    edata = {'feat': np.random.rand(
        num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
247
248
    edge_data = EdgeData(src_ids, dst_ids, edata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
249
250
251
252
253
254
255
256
257
258
259
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == num_nodes
    assert g.num_edges() == num_edges

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
260
261
262
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
263
264
265
266
267
    assert_data(ndata, g.ndata)
    assert_data(edata, g.edata)


def _test_construct_graphs_hetero():
268
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
269
    # node_id/src_id/dst_id could be non-sorted, duplicated, non-numeric.
270
271
272
273
274
275
276
277
278
279
280
281
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    num_dup_nodes = int(num_nodes*0.2)
    ntypes = ['user', 'item']
    node_data = []
    node_ids_dict = {}
    ndata_dict = {}
    for ntype in ntypes:
        node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        assert len(node_ids) == num_nodes
282
        # to be non-sorted
283
        np.random.shuffle(node_ids)
284
        # to be duplicated
285
        node_ids = np.hstack((node_ids, node_ids[:num_dup_nodes]))
286
287
        # to be non-numeric
        node_ids = ['id_{}'.format(id) for id in node_ids]
288
289
290
291
292
        t_ndata = {'feat': np.random.rand(num_nodes+num_dup_nodes, num_dims),
                   'label': np.random.randint(2, size=num_nodes+num_dup_nodes)}
        _, u_indices = np.unique(node_ids, return_index=True)
        ndata = {'feat': t_ndata['feat'][u_indices],
                 'label': t_ndata['label'][u_indices]}
293
        node_data.append(NodeData(node_ids, t_ndata, type=ntype))
294
295
296
297
298
299
300
301
302
303
        node_ids_dict[ntype] = node_ids
        ndata_dict[ntype] = ndata
    etypes = [('user', 'follow', 'user'), ('user', 'like', 'item')]
    edge_data = []
    edata_dict = {}
    for src_type, e_type, dst_type in etypes:
        src_ids = np.random.choice(node_ids_dict[src_type], size=num_edges)
        dst_ids = np.random.choice(node_ids_dict[dst_type], size=num_edges)
        edata = {'feat': np.random.rand(
            num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
304
        edge_data.append(EdgeData(src_ids, dst_ids, edata,
305
306
                         type=(src_type, e_type, dst_type)))
        edata_dict[(src_type, e_type, dst_type)] = edata
307
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
308
309
310
311
312
313
314
315
316
317
318
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
    assert g.num_nodes() == num_nodes*len(ntypes)
    assert g.num_edges() == num_edges*len(etypes)

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
319
320
321
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
322
323
324
325
326
327
328
329
330
    for ntype in g.ntypes:
        assert g.num_nodes(ntype) == num_nodes
        assert_data(ndata_dict[ntype], g.nodes[ntype].data)
    for etype in g.canonical_etypes:
        assert g.num_edges(etype) == num_edges
        assert_data(edata_dict[etype], g.edges[etype].data)


def _test_construct_graphs_multiple():
331
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData, DGLGraphConstructor
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    num_nodes = 100
    num_edges = 1000
    num_graphs = 10
    num_dims = 3
    node_ids = np.array([], dtype=np.int)
    src_ids = np.array([], dtype=np.int)
    dst_ids = np.array([], dtype=np.int)
    ngraph_ids = np.array([], dtype=np.int)
    egraph_ids = np.array([], dtype=np.int)
    u_indices = np.array([], dtype=np.int)
    for i in range(num_graphs):
        l_node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        node_ids = np.append(node_ids, l_node_ids)
        _, l_u_indices = np.unique(l_node_ids, return_index=True)
        u_indices = np.append(u_indices, l_u_indices)
        ngraph_ids = np.append(ngraph_ids, np.full(num_nodes, i))
        src_ids = np.append(src_ids, np.random.choice(
            l_node_ids, size=num_edges))
        dst_ids = np.append(dst_ids, np.random.choice(
            l_node_ids, size=num_edges))
        egraph_ids = np.append(egraph_ids, np.full(num_edges, i))
    ndata = {'feat': np.random.rand(num_nodes*num_graphs, num_dims),
             'label': np.random.randint(2, size=num_nodes*num_graphs)}
356
    ngraph_ids = ['graph_{}'.format(id) for id in ngraph_ids]
357
    node_data = NodeData(node_ids, ndata, graph_id=ngraph_ids)
358
    egraph_ids = ['graph_{}'.format(id) for id in egraph_ids]
359
360
    edata = {'feat': np.random.rand(
        num_edges*num_graphs, num_dims), 'label': np.random.randint(2, size=num_edges*num_graphs)}
361
    edge_data = EdgeData(src_ids, dst_ids, edata, graph_id=egraph_ids)
362
363
    gdata = {'feat': np.random.rand(num_graphs, num_dims),
             'label': np.random.randint(2, size=num_graphs)}
364
365
    graph_ids = ['graph_{}'.format(id) for id in np.arange(num_graphs)]
    graph_data = GraphData(graph_ids, gdata)
366
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
367
368
369
370
        node_data, edge_data, graph_data)
    assert len(graphs) == num_graphs
    assert len(data_dict) == len(gdata)
    for k, v in data_dict.items():
371
372
        assert F.dtype(v) != F.float64
        assert F.array_equal(F.tensor(gdata[k], dtype=F.dtype(v)), v)
373
374
375
376
377
378
379
380
381
382
383
384
    for i, g in enumerate(graphs):
        assert g.is_homogeneous
        assert g.num_nodes() == num_nodes
        assert g.num_edges() == num_edges

        def assert_data(lhs, rhs, size, node=False):
            for key, value in lhs.items():
                assert key in rhs
                value = value[i*size:(i+1)*size]
                if node:
                    indices = u_indices[i*size:(i+1)*size]
                    value = value[indices]
385
386
387
                assert F.dtype(rhs[key]) != F.float64
                assert F.array_equal(
                    F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
388
389
390
391
        assert_data(ndata, g.ndata, num_nodes, node=True)
        assert_data(edata, g.edata, num_edges)

    # Graph IDs found in node/edge CSV but not in graph CSV
392
    graph_data = GraphData(np.arange(num_graphs-2), {})
393
394
    expect_except = False
    try:
395
        _, _ = DGLGraphConstructor.construct_graphs(
396
397
398
399
400
401
402
            node_data, edge_data, graph_data)
    except:
        expect_except = True
    assert expect_except


def _test_DefaultDataParser():
403
    from dgl.data.csv_dataset_base import DefaultDataParser
404
405
406
407
408
409
410
411
412
413
414
415
416
    # common csv
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        num_nodes = 5
        num_labels = 3
        num_dims = 2
        node_id = np.arange(num_nodes)
        label = np.random.randint(num_labels, size=num_nodes)
        feat = np.random.rand(num_nodes, num_dims)
        df = pd.DataFrame({'node_id': node_id, 'label': label,
                           'feat': [line.tolist() for line in feat],
                           })
        df.to_csv(csv_path, index=False)
417
        dp = DefaultDataParser()
418
419
420
421
422
423
424
425
426
427
428
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert np.array_equal(node_id, dt['node_id'])
        assert np.array_equal(label, dt['label'])
        assert np.array_equal(feat, dt['feat'])
    # string consists of non-numeric values
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': ['a', 'b', 'c'],
                           })
        df.to_csv(csv_path, index=False)
429
        dp = DefaultDataParser()
430
431
432
433
434
435
436
437
438
439
440
441
442
        df = pd.read_csv(csv_path)
        expect_except = False
        try:
            dt = dp(df)
        except:
            expect_except = True
        assert expect_except
    # csv has index column which is ignored as it's unnamed
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': [1, 2, 3],
                           })
        df.to_csv(csv_path)
443
        dp = DefaultDataParser()
444
445
446
447
448
449
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert len(dt) == 1


def _test_load_yaml_with_sanity_check():
450
    from dgl.data.csv_dataset_base import load_yaml_with_sanity_check
451
452
453
454
455
456
457
    with tempfile.TemporaryDirectory() as test_dir:
        yaml_path = os.path.join(test_dir, 'meta.yaml')
        # workable but meaningless usually
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
458
        meta = load_yaml_with_sanity_check(yaml_path)
459
460
461
462
463
464
465
466
467
468
469
470
        assert meta.version == '1.0.0'
        assert meta.dataset_name == 'default'
        assert meta.separator == ','
        assert len(meta.node_data) == 0
        assert len(meta.edge_data) == 0
        assert meta.graph_data is None
        # minimum with required fields only
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
471
        meta = load_yaml_with_sanity_check(yaml_path)
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        for ndata in meta.node_data:
            assert ndata.file_name == 'nodes.csv'
            assert ndata.ntype == '_V'
            assert ndata.graph_id_field == 'graph_id'
            assert ndata.node_id_field == 'node_id'
        for edata in meta.edge_data:
            assert edata.file_name == 'edges.csv'
            assert edata.etype == ['_V', '_E', '_V']
            assert edata.graph_id_field == 'graph_id'
            assert edata.src_id_field == 'src_id'
            assert edata.dst_id_field == 'dst_id'
        # optional fields are specified
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default',
                     'separator': '|',
                     'node_data': [{'file_name': 'nodes.csv', 'ntype': 'user', 'graph_id_field': 'xxx', 'node_id_field': 'xxx'}],
                     'edge_data': [{'file_name': 'edges.csv', 'etype': ['user', 'follow', 'user'], 'graph_id_field':'xxx', 'src_id_field':'xxx', 'dst_id_field':'xxx'}],
                     'graph_data': {'file_name': 'graph.csv', 'graph_id_field': 'xxx'}
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
492
        meta = load_yaml_with_sanity_check(yaml_path)
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        assert len(meta.node_data) == 1
        ndata = meta.node_data[0]
        assert ndata.ntype == 'user'
        assert ndata.graph_id_field == 'xxx'
        assert ndata.node_id_field == 'xxx'
        assert len(meta.edge_data) == 1
        edata = meta.edge_data[0]
        assert edata.etype == ['user', 'follow', 'user']
        assert edata.graph_id_field == 'xxx'
        assert edata.src_id_field == 'xxx'
        assert edata.dst_id_field == 'xxx'
        assert meta.graph_data is not None
        assert meta.graph_data.file_name == 'graph.csv'
        assert meta.graph_data.graph_id_field == 'xxx'
        # some required fields are missing
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        for field in yaml_data.keys():
            ydata = {k: v for k, v in yaml_data.items()}
            ydata.pop(field)
            with open(yaml_path, 'w') as f:
                yaml.dump(ydata, f, sort_keys=False)
            expect_except = False
            try:
517
                meta = load_yaml_with_sanity_check(yaml_path)
518
519
520
521
522
523
524
525
526
527
528
            except:
                expect_except = True
            assert expect_except
        # inapplicable version
        yaml_data = {'version': '0.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes_0.csv'}],
                     'edge_data': [{'file_name': 'edges_0.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
529
            meta = load_yaml_with_sanity_check(yaml_path)
530
531
532
533
534
535
536
537
538
539
540
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate node types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}, {'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
541
            meta = load_yaml_with_sanity_check(yaml_path)
542
543
544
545
546
547
548
549
550
551
552
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate edge types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}, {'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
553
            meta = load_yaml_with_sanity_check(yaml_path)
554
555
556
557
558
559
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_node_data_from_csv():
560
    from dgl.data.csv_dataset_base import MetaNode, NodeData, DefaultDataParser
561
562
563
564
565
566
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        # minimum
        df = pd.DataFrame({'node_id': np.arange(num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
567
568
569
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
570
571
572
573
574
575
576
577
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 0

        # common case
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                          'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
578
579
580
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
581
582
583
584
585
586
587
588
589
590
591
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(np.full(num_nodes, 0), node_data.graph_id)
        assert node_data.type == '_V'

        # add more fields into nodes.csv
        df = pd.DataFrame({'node_id': np.arange(num_nodes), 'label': np.random.randint(
            3, size=num_nodes), 'graph_id': np.full(num_nodes, 1)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
592
593
594
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
595
596
597
598
599
600
601
602
603
604
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(df['graph_id'], node_data.graph_id)
        assert node_data.type == '_V'

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
605
        meta_node = MetaNode(file_name=csv_path)
606
607
        expect_except = False
        try:
608
609
            NodeData.load_from_csv(
                meta_node, DefaultDataParser())
610
611
612
613
614
615
        except:
            expect_except = True
        assert expect_except


def _test_load_edge_data_from_csv():
616
    from dgl.data.csv_dataset_base import MetaEdge, EdgeData, DefaultDataParser
617
618
619
620
621
622
623
624
625
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        num_edges = 1000
        # minimum
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
626
627
628
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
629
630
631
632
633
634
635
636
637
638
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 0

        # common case
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
639
640
641
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 1
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(np.full(num_edges, 0), edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # add more fields into edges.csv
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'graph_id': np.arange(num_edges),
                           'feat': np.random.randint(3, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
657
658
659
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
660
661
662
663
664
665
666
667
668
669
670
671
672
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 2
        assert np.array_equal(df['feat'], edge_data.data['feat'])
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(df['graph_id'], edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # required headers are missing
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
673
        meta_edge = MetaEdge(file_name=csv_path)
674
675
        expect_except = False
        try:
676
677
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
678
679
680
681
682
683
684
        except DGLError:
            expect_except = True
        assert expect_except
        df = pd.DataFrame({'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
685
        meta_edge = MetaEdge(file_name=csv_path)
686
687
        expect_except = False
        try:
688
689
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
690
691
692
693
694
695
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_graph_data_from_csv():
696
    from dgl.data.csv_dataset_base import MetaGraph, GraphData, DefaultDataParser
697
698
699
700
701
702
    with tempfile.TemporaryDirectory() as test_dir:
        num_graphs = 100
        # minimum
        df = pd.DataFrame({'graph_id': np.arange(num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
703
704
705
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
706
707
708
709
710
711
712
713
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 0

        # common case
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                          'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
714
715
716
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
717
718
719
720
721
722
723
724
725
726
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 1
        assert np.array_equal(df['label'], graph_data.data['label'])

        # add more fields into graph.csv
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                           'feat': np.random.randint(3, size=num_graphs),
                           'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
727
728
729
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
730
731
732
733
734
735
736
737
738
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 2
        assert np.array_equal(df['feat'], graph_data.data['feat'])
        assert np.array_equal(df['label'], graph_data.data['label'])

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
739
        meta_graph = MetaGraph(file_name=csv_path)
740
741
        expect_except = False
        try:
742
743
            GraphData.load_from_csv(
                meta_graph, DefaultDataParser())
744
745
746
747
748
        except DGLError:
            expect_except = True
        assert expect_except


749
def _test_CSVDataset_single():
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges, num_dims)
        label_edata = np.random.randint(2, size=num_edges)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)

        # load CSVDataset
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
800
            csv_dataset = data.CSVDataset(
801
802
803
804
805
806
807
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == 1
            g = csv_dataset[0]
            assert not g.is_homogeneous
            assert csv_dataset.has_cache()
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
808
                assert F.array_equal(F.tensor(feat_ndata, dtype=F.float32),
809
810
811
812
813
                                     g.nodes[ntype].data['feat'])
                assert np.array_equal(label_ndata,
                                      F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
814
                assert F.array_equal(F.tensor(feat_edata, dtype=F.float32),
815
816
817
818
819
                                     g.edges[etype].data['feat'])
                assert np.array_equal(label_edata,
                                      F.asnumpy(g.edges[etype].data['label']))


820
def _test_CSVDataset_multiple():
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes*num_graphs, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges*num_graphs, num_dims)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        feat_gdata = np.random.rand(num_graphs, num_dims)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'feat': [line.tolist() for line in feat_gdata],
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

877
        # load CSVDataset with default node/edge/gdata_parser
878
879
880
881
882
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
883
            csv_dataset = data.CSVDataset(
884
885
886
887
888
889
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == num_graphs
            assert csv_dataset.has_cache()
            assert len(csv_dataset.data) == 2
            assert 'feat' in csv_dataset.data
            assert 'label' in csv_dataset.data
890
            assert F.array_equal(F.tensor(feat_gdata, dtype=F.float32),
891
                                 csv_dataset.data['feat'])
892
            for i, (g, g_data) in enumerate(csv_dataset):
893
                assert not g.is_homogeneous
894
                assert F.asnumpy(g_data['label']) == label_gdata[i]
895
                assert F.array_equal(g_data['feat'], F.tensor(feat_gdata[i], dtype=F.float32))
896
897
                for ntype in g.ntypes:
                    assert g.num_nodes(ntype) == num_nodes
898
                    assert F.array_equal(F.tensor(feat_ndata[i*num_nodes:(i+1)*num_nodes], dtype=F.float32),
899
900
901
902
903
                                         g.nodes[ntype].data['feat'])
                    assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes],
                                          F.asnumpy(g.nodes[ntype].data['label']))
                for etype in g.etypes:
                    assert g.num_edges(etype) == num_edges
904
                    assert F.array_equal(F.tensor(feat_edata[i*num_edges:(i+1)*num_edges], dtype=F.float32),
905
906
907
908
909
                                         g.edges[etype].data['feat'])
                    assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges],
                                          F.asnumpy(g.edges[etype].data['label']))


910
def _test_CSVDataset_customized_data_parser():
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

        class CustDataParser:
            def __call__(self, df):
                data = {}
                for header in df:
                    dt = df[header].to_numpy().squeeze()
                    if header == 'label':
                        dt += 2
                    data[header] = dt
                return data
969
970
971
972
973
974
        # load CSVDataset with customized node/edge/gdata_parser
        # specify via dict[ntype/etype, callable]
        csv_dataset = data.CSVDataset(
            test_dir, force_reload=True, ndata_parser={'user': CustDataParser()},
            edata_parser={('user', 'like', 'item'): CustDataParser()},
            gdata_parser=CustDataParser())
975
976
977
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
        assert 'label' in csv_dataset.data
978
        for i, (g, g_data) in enumerate(csv_dataset):
979
            assert not g.is_homogeneous
980
            assert F.asnumpy(g_data['label']) == label_gdata[i] + 2
981
982
983
984
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2 if ntype == 'user' else 0
                assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes]+offset,
985
                                    F.asnumpy(g.nodes[ntype].data['label']))
986
987
988
989
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2 if etype == 'like' else 0
                assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges]+offset,
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
                                    F.asnumpy(g.edges[etype].data['label']))
        # specify via callable
        csv_dataset = data.CSVDataset(
            test_dir, force_reload=True, ndata_parser=CustDataParser(),
            edata_parser=CustDataParser(), gdata_parser=CustDataParser())
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
        assert 'label' in csv_dataset.data
        for i, (g, g_data) in enumerate(csv_dataset):
            assert not g.is_homogeneous
            assert F.asnumpy(g_data['label']) == label_gdata[i] + 2
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2
                assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes]+offset,
                                    F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2
                assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges]+offset,
                                    F.asnumpy(g.edges[etype].data['label']))
1011
1012
1013


def _test_NodeEdgeGraphData():
1014
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData
1015
1016
1017
    # NodeData basics
    num_nodes = 100
    node_ids = np.arange(num_nodes, dtype=np.float)
1018
    ndata = NodeData(node_ids, {})
1019
    assert np.array_equal(ndata.id, node_ids)
1020
1021
1022
1023
1024
1025
    assert len(ndata.data) == 0
    assert ndata.type == '_V'
    assert np.array_equal(ndata.graph_id, np.full(num_nodes, 0))
    # NodeData more
    data = {'feat': np.random.rand(num_nodes, 3)}
    graph_id = np.arange(num_nodes)
1026
    ndata = NodeData(node_ids, data, type='user', graph_id=graph_id)
1027
1028
1029
1030
1031
1032
1033
1034
1035
    assert ndata.type == 'user'
    assert np.array_equal(ndata.graph_id, graph_id)
    assert len(ndata.data) == len(data)
    for k, v in data.items():
        assert k in ndata.data
        assert np.array_equal(ndata.data[k], v)
    # NodeData except
    expect_except = False
    try:
1036
        NodeData(np.arange(num_nodes), {'feat': np.random.rand(
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
            num_nodes+1, 3)}, graph_id=np.arange(num_nodes-1))
    except:
        expect_except = True
    assert expect_except

    # EdgeData basics
    num_nodes = 100
    num_edges = 1000
    src_ids = np.random.randint(num_nodes, size=num_edges)
    dst_ids = np.random.randint(num_nodes, size=num_edges)
1047
    edata = EdgeData(src_ids, dst_ids, {})
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == ('_V', '_E', '_V')
    assert len(edata.data) == 0
    assert np.array_equal(edata.graph_id, np.full(num_edges, 0))
    # EdageData more
    src_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    dst_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    data = {'feat': np.random.rand(num_edges, 3)}
    etype = ('user', 'like', 'item')
    graph_ids = np.arange(num_edges)
1059
    edata = EdgeData(src_ids, dst_ids, data,
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
                            type=etype, graph_id=graph_ids)
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == etype
    assert len(edata.data) == len(data)
    for k, v in data.items():
        assert k in edata.data
        assert np.array_equal(edata.data[k], v)
    assert np.array_equal(edata.graph_id, graph_ids)
    # EdgeData except
    expect_except = False
    try:
1072
        EdgeData(np.arange(num_edges), np.arange(
1073
1074
1075
1076
1077
1078
1079
1080
            num_edges+1), {'feat': np.random.rand(num_edges-1, 3)}, graph_id=np.arange(num_edges+2))
    except:
        expect_except = True
    assert expect_except

    # GraphData basics
    num_graphs = 10
    graph_ids = np.arange(num_graphs)
1081
    gdata = GraphData(graph_ids, {})
1082
1083
1084
1085
1086
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == 0
    # GraphData more
    graph_ids = np.arange(num_graphs).astype(np.float)
    data = {'feat': np.random.rand(num_graphs, 3)}
1087
    gdata = GraphData(graph_ids, data)
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == len(data)
    for k, v in data.items():
        assert k in gdata.data
        assert np.array_equal(gdata.data[k], v)


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_csvdataset():
    _test_NodeEdgeGraphData()
    _test_construct_graphs_homo()
    _test_construct_graphs_hetero()
    _test_construct_graphs_multiple()
    _test_DefaultDataParser()
    _test_load_yaml_with_sanity_check()
    _test_load_node_data_from_csv()
    _test_load_edge_data_from_csv()
    _test_load_graph_data_from_csv()
1106
1107
1108
    _test_CSVDataset_single()
    _test_CSVDataset_multiple()
    _test_CSVDataset_customized_data_parser()
1109

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_add_nodepred_split():
    dataset = data.AmazonCoBuyComputerDataset()
    print('train_mask' in dataset[0].ndata)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1])
    assert 'train_mask' in dataset[0].ndata

    dataset = data.AIFBDataset()
    print('train_mask' in dataset[0].nodes['Publikationen'].data)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1], ntype='Publikationen')
    assert 'train_mask' in dataset[0].nodes['Publikationen'].data

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred1():
    ds = data.AmazonCoBuyComputerDataset()
    print('train_mask' in ds[0].ndata)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].num_nodes() == ds[0].num_nodes()
    assert new_ds[0].num_edges() == ds[0].num_edges()
    assert 'train_mask' in new_ds[0].ndata

    ds = data.AIFBDataset()
    print('train_mask' in ds[0].nodes['Personen'].data)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].ntypes == ds[0].ntypes
    assert new_ds[0].canonical_etypes == ds[0].canonical_etypes
    assert 'train_mask' in new_ds[0].nodes['Personen'].data

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred2():
    # test proper reprocessing

    # create
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
    # read from cache
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.1, 0.1, 0.8])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.1)

    # create
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
    # read from cache
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.1, 0.1, 0.8], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.1)
1163

Jinjing Zhou's avatar
Jinjing Zhou committed
1164
1165
1166
1167
1168
1169
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_nodepred_ogb():
    from ogb.nodeproppred import DglNodePropPredDataset
    ds = data.AsNodePredDataset(DglNodePropPredDataset("ogbn-arxiv"), split_ratio=None, verbose=True)
    # force generate new split
    ds = data.AsNodePredDataset(DglNodePropPredDataset("ogbn-arxiv"), split_ratio=[0.7, 0.2, 0.1], verbose=True)
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_linkpred():
    # create
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.8, 0.1, 0.1], neg_ratio=1, verbose=True)
    # Cora has 10556 edges, 10% test edges can be 1057
    assert ds.test_edges[0][0].shape[0] == 1057
    # negative samples, not guaranteed, so the assert is in a relaxed range
    assert 1000 <= ds.test_edges[1][0].shape[0] <= 1057
    # read from cache
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.7, 0.1, 0.2], neg_ratio=2, verbose=True)
    assert ds.test_edges[0][0].shape[0] == 2112
    # negative samples, not guaranteed to be ratio 2, so the assert is in a relaxed range
    assert 4000 < ds.test_edges[1][0].shape[0] <= 4224


@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_linkpred_ogb():
    from ogb.linkproppred import DglLinkPropPredDataset
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=None, verbose=True)
    # original dataset has 46329 test edges
    assert ds.test_edges[0][0].shape[0] == 46329
    # force generate new split
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=[0.7, 0.2, 0.1], verbose=True)
    assert ds.test_edges[0][0].shape[0] == 235812

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred_csvdataset():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path = os.path.join(test_dir, "test_edges.csv")
        nodes_csv_path = os.path.join(test_dir, "test_nodes.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path)
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path)
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        num_classes = num_nodes
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.arange(num_classes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path, index=False)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        df.to_csv(edges_csv_path, index=False)

1227
        ds = data.CSVDataset(test_dir, force_reload=True)
1228
1229
1230
1231
        assert 'feat' in ds[0].ndata
        assert 'label' in ds[0].ndata
        assert 'train_mask' not in ds[0].ndata
        assert not hasattr(ds[0], 'num_classes')
1232
        new_ds = data.AsNodePredDataset(ds, split_ratio=[0.8, 0.1, 0.1], force_reload=True)
1233
1234
1235
1236
1237
        assert new_ds.num_classes == num_classes
        assert 'feat' in new_ds[0].ndata
        assert 'label' in new_ds[0].ndata
        assert 'train_mask' in new_ds[0].ndata

1238
if __name__ == '__main__':
1239
    test_minigc()
1240
    test_gin()
1241
    test_data_hash()
1242
1243
1244
    test_tudataset_regression()
    test_fraud()
    test_fakenews()
1245
    test_extract_archive()
1246
    test_csvdataset()
1247
1248
1249
    test_add_nodepred_split()
    test_as_nodepred1()
    test_as_nodepred2()
1250
    test_as_nodepred_csvdataset()