test_data.py 57.7 KB
Newer Older
1
2
import unittest
import backend as F
3
import numpy as np
4
5
6
import gzip
import tempfile
import os
7
8
9
import pandas as pd
import yaml
import pytest
10
import dgl
11
12
import dgl.data as data
from dgl import DGLError
13
import dgl
14
15

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
16
17
18
19
def test_minigc():
    ds = data.MiniGCDataset(16, 10, 20)
    g, l = list(zip(*ds))
    print(g, l)
20
21
22
23
24
    g1 = ds[0][0]
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.MiniGCDataset(16, 10, 20, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
25
26
27
28
29
30
31
32
33
34

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gin():
    ds_n_graphs = {
        'MUTAG': 188,
        'IMDBBINARY': 1000,
        'IMDBMULTI': 1500,
        'PROTEINS': 1113,
        'PTC': 344,
    }
35
    transform = dgl.AddSelfLoop(allow_duplicate=True)
36
37
38
    for name, n_graphs in ds_n_graphs.items():
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False)
        assert len(ds) == n_graphs, (len(ds), name)
39
40
41
42
        g1 = ds[0][0]
        ds = data.GINDataset(name, self_loop=False, degree_as_nlabel=False, transform=transform)
        g2 = ds[0][0]
        assert g2.num_edges() - g1.num_edges() == g1.num_nodes()
43

44
45
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fraud():
46
47
    transform = dgl.AddSelfLoop(allow_duplicate=True)

48
49
    g = data.FraudDataset('amazon')[0]
    assert g.num_nodes() == 11944
50
51
52
53
    num_edges1 = g.num_edges()
    g2 = data.FraudDataset('amazon', transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - num_edges1 == g.num_nodes() * 3
54
55
56

    g = data.FraudAmazonDataset()[0]
    assert g.num_nodes() == 11944
57
58
59
    g2 = data.FraudAmazonDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
60
61
62

    g = data.FraudYelpDataset()[0]
    assert g.num_nodes() == 45954
63
64
65
    g2 = data.FraudYelpDataset(transform=transform)[0]
    # 3 edge types
    assert g2.num_edges() - g.num_edges() == g.num_nodes() * 3
66
67
68

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_fakenews():
69
70
    transform = dgl.AddSelfLoop(allow_duplicate=True)

71
72
    ds = data.FakeNewsDataset('politifact', 'bert')
    assert len(ds) == 314
73
74
75
    g = ds[0][0]
    g2 = data.FakeNewsDataset('politifact', 'bert', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
76
77
78

    ds = data.FakeNewsDataset('gossipcop', 'profile')
    assert len(ds) == 5464
79
80
81
    g = ds[0][0]
    g2 = data.FakeNewsDataset('gossipcop', 'profile', transform=transform)[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
Jinjing Zhou's avatar
Jinjing Zhou committed
82
83

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
84
def test_tudataset_regression():
Jinjing Zhou's avatar
Jinjing Zhou committed
85
86
    ds = data.TUDataset('ZINC_test', force_reload=True)
    assert len(ds) == 5000
87
    g = ds[0][0]
Jinjing Zhou's avatar
Jinjing Zhou committed
88

89
90
91
92
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    ds = data.TUDataset('ZINC_test', force_reload=True, transform=transform)
    g2 = ds[0][0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
93

94
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
95
96
97
def test_data_hash():
    class HashTestDataset(data.DGLDataset):
        def __init__(self, hash_key=()):
98
99
100
            super(HashTestDataset, self).__init__(
                'hashtest', hash_key=hash_key)

101
102
103
        def _load(self):
            pass

104
105
106
    a = HashTestDataset((True, 0, '1', (1, 2, 3)))
    b = HashTestDataset((True, 0, '1', (1, 2, 3)))
    c = HashTestDataset((True, 0, '1', (1, 2, 4)))
107
108
109
    assert a.hash == b.hash
    assert a.hash != c.hash

110

111
112
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_citation_graph():
113
114
    transform = dgl.AddSelfLoop(allow_duplicate=True)

115
116
117
118
119
120
    # cora
    g = data.CoraGraphDataset()[0]
    assert g.num_nodes() == 2708
    assert g.num_edges() == 10556
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
121
122
    g2 = data.CoraGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
123
124
125
126
127
128
129

    # Citeseer
    g = data.CiteseerGraphDataset()[0]
    assert g.num_nodes() == 3327
    assert g.num_edges() == 9228
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
130
131
    g2 = data.CiteseerGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
132
133
134
135
136
137
138

    # Pubmed
    g = data.PubmedGraphDataset()[0]
    assert g.num_nodes() == 19717
    assert g.num_edges() == 88651
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
139
140
    g2 = data.PubmedGraphDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
141
142
143
144


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_gnn_benchmark():
145
146
    transform = dgl.AddSelfLoop(allow_duplicate=True)

147
148
149
150
151
152
    # AmazonCoBuyComputerDataset
    g = data.AmazonCoBuyComputerDataset()[0]
    assert g.num_nodes() == 13752
    assert g.num_edges() == 491722
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
153
154
    g2 = data.AmazonCoBuyComputerDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
155
156
157
158
159
160
161

    # AmazonCoBuyPhotoDataset
    g = data.AmazonCoBuyPhotoDataset()[0]
    assert g.num_nodes() == 7650
    assert g.num_edges() == 238163
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
162
163
    g2 = data.AmazonCoBuyPhotoDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
164
165
166
167
168
169
170

    # CoauthorPhysicsDataset
    g = data.CoauthorPhysicsDataset()[0]
    assert g.num_nodes() == 34493
    assert g.num_edges() == 495924
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
171
172
    g2 = data.CoauthorPhysicsDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
173
174
175
176
177
178
179

    # CoauthorCSDataset
    g = data.CoauthorCSDataset()[0]
    assert g.num_nodes() == 18333
    assert g.num_edges() == 163788
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
180
181
    g2 = data.CoauthorCSDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
182
183
184
185
186
187
188

    # CoraFullDataset
    g = data.CoraFullDataset()[0]
    assert g.num_nodes() == 19793
    assert g.num_edges() == 126842
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))
189
190
    g2 = data.CoraFullDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()
191
192
193
194
195
196
197
198
199
200
201


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_reddit():
    # RedditDataset
    g = data.RedditDataset()[0]
    assert g.num_nodes() == 232965
    assert g.num_edges() == 114615892
    dst = F.asnumpy(g.edges()[1])
    assert np.array_equal(dst, np.sort(dst))

202
203
204
205
    transform = dgl.AddSelfLoop(allow_duplicate=True)
    g2 = data.RedditDataset(transform=transform)[0]
    assert g2.num_edges() - g.num_edges() == g.num_nodes()

206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_extract_archive():
    # gzip
    with tempfile.TemporaryDirectory() as src_dir:
        gz_file = 'gz_archive'
        gz_path = os.path.join(src_dir, gz_file + '.gz')
        content = b"test extract archive gzip"
        with gzip.open(gz_path, 'wb') as f:
            f.write(content)
        with tempfile.TemporaryDirectory() as dst_dir:
            data.utils.extract_archive(gz_path, dst_dir, overwrite=True)
            assert os.path.exists(os.path.join(dst_dir, gz_file))


221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def _test_construct_graphs_node_ids():
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
    num_nodes = 100
    num_edges = 1000

    # node IDs are required to be unique
    node_ids = np.random.choice(np.arange(num_nodes / 2), num_nodes)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    expect_except = False
    try:
        _, _ = DGLGraphConstructor.construct_graphs(
            node_data, edge_data)
    except:
        expect_except = True
    assert expect_except

    # node IDs are already labelled from 0~num_nodes-1
    node_ids = np.arange(num_nodes)
    np.random.shuffle(node_ids)
    _, idx = np.unique(node_ids, return_index=True)
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    node_feat = np.random.rand(num_nodes, 3)
    node_data = NodeData(node_ids, {'feat':node_feat})
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)
    assert F.array_equal(F.tensor(node_feat[idx], dtype=F.float32), g.ndata['feat'])

    # node IDs are mixed with numeric and non-numeric values
    # homogeneous graph
    node_ids = [1, 2, 3, 'a']
    src_ids = [1, 2, 3]
    dst_ids = ['a', 1, 2]
    node_data = NodeData(node_ids, {})
    edge_data = EdgeData(src_ids, dst_ids, {})
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == len(node_ids)
    assert g.num_edges() == len(src_ids)

    # heterogeneous graph
    node_ids_user = [1, 2, 3]
    node_ids_item = ['a', 'b', 'c']
    src_ids = node_ids_user
    dst_ids = node_ids_item
    node_data_user = NodeData(node_ids_user, {}, type='user')
    node_data_item = NodeData(node_ids_item, {}, type='item')
    edge_data = EdgeData(src_ids, dst_ids, {}, type=('user', 'like', 'item'))
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
        [node_data_user, node_data_item], edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
    assert g.num_nodes('user') == len(node_ids_user)
    assert g.num_nodes('item') == len(node_ids_item)
    assert g.num_edges() == len(src_ids)


294
def _test_construct_graphs_homo():
295
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
296
    # node_id could be non-sorted, non-numeric.
297
298
299
300
301
302
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    node_ids = np.random.choice(
        np.arange(num_nodes*2), size=num_nodes, replace=False)
    assert len(node_ids) == num_nodes
303
    # to be non-sorted
304
    np.random.shuffle(node_ids)
305
306
    # to be non-numeric
    node_ids = ['id_{}'.format(id) for id in node_ids]
307
308
    t_ndata = {'feat': np.random.rand(num_nodes, num_dims),
               'label': np.random.randint(2, size=num_nodes)}
309
310
311
    _, u_indices = np.unique(node_ids, return_index=True)
    ndata = {'feat': t_ndata['feat'][u_indices],
             'label': t_ndata['label'][u_indices]}
312
    node_data = NodeData(node_ids, t_ndata)
313
314
315
316
    src_ids = np.random.choice(node_ids, size=num_edges)
    dst_ids = np.random.choice(node_ids, size=num_edges)
    edata = {'feat': np.random.rand(
        num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
317
318
    edge_data = EdgeData(src_ids, dst_ids, edata)
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
319
320
321
322
323
324
325
326
327
328
329
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert g.is_homogeneous
    assert g.num_nodes() == num_nodes
    assert g.num_edges() == num_edges

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
330
331
332
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
333
334
335
336
337
    assert_data(ndata, g.ndata)
    assert_data(edata, g.edata)


def _test_construct_graphs_hetero():
338
    from dgl.data.csv_dataset_base import NodeData, EdgeData, DGLGraphConstructor
339
    # node_id/src_id/dst_id could be non-sorted, duplicated, non-numeric.
340
341
342
343
344
345
346
347
348
349
350
    num_nodes = 100
    num_edges = 1000
    num_dims = 3
    ntypes = ['user', 'item']
    node_data = []
    node_ids_dict = {}
    ndata_dict = {}
    for ntype in ntypes:
        node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        assert len(node_ids) == num_nodes
351
        # to be non-sorted
352
        np.random.shuffle(node_ids)
353
354
        # to be non-numeric
        node_ids = ['id_{}'.format(id) for id in node_ids]
355
356
        t_ndata = {'feat': np.random.rand(num_nodes, num_dims),
                   'label': np.random.randint(2, size=num_nodes)}
357
358
359
        _, u_indices = np.unique(node_ids, return_index=True)
        ndata = {'feat': t_ndata['feat'][u_indices],
                 'label': t_ndata['label'][u_indices]}
360
        node_data.append(NodeData(node_ids, t_ndata, type=ntype))
361
362
363
364
365
366
367
368
369
370
        node_ids_dict[ntype] = node_ids
        ndata_dict[ntype] = ndata
    etypes = [('user', 'follow', 'user'), ('user', 'like', 'item')]
    edge_data = []
    edata_dict = {}
    for src_type, e_type, dst_type in etypes:
        src_ids = np.random.choice(node_ids_dict[src_type], size=num_edges)
        dst_ids = np.random.choice(node_ids_dict[dst_type], size=num_edges)
        edata = {'feat': np.random.rand(
            num_edges, num_dims), 'label': np.random.randint(2, size=num_edges)}
371
        edge_data.append(EdgeData(src_ids, dst_ids, edata,
372
373
                         type=(src_type, e_type, dst_type)))
        edata_dict[(src_type, e_type, dst_type)] = edata
374
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
375
376
377
378
379
380
381
382
383
384
385
        node_data, edge_data)
    assert len(graphs) == 1
    assert len(data_dict) == 0
    g = graphs[0]
    assert not g.is_homogeneous
    assert g.num_nodes() == num_nodes*len(ntypes)
    assert g.num_edges() == num_edges*len(etypes)

    def assert_data(lhs, rhs):
        for key, value in lhs.items():
            assert key in rhs
386
387
388
            assert F.dtype(rhs[key]) != F.float64
            assert F.array_equal(
                F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
389
390
391
392
393
394
395
396
397
    for ntype in g.ntypes:
        assert g.num_nodes(ntype) == num_nodes
        assert_data(ndata_dict[ntype], g.nodes[ntype].data)
    for etype in g.canonical_etypes:
        assert g.num_edges(etype) == num_edges
        assert_data(edata_dict[etype], g.edges[etype].data)


def _test_construct_graphs_multiple():
398
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData, DGLGraphConstructor
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    num_nodes = 100
    num_edges = 1000
    num_graphs = 10
    num_dims = 3
    node_ids = np.array([], dtype=np.int)
    src_ids = np.array([], dtype=np.int)
    dst_ids = np.array([], dtype=np.int)
    ngraph_ids = np.array([], dtype=np.int)
    egraph_ids = np.array([], dtype=np.int)
    u_indices = np.array([], dtype=np.int)
    for i in range(num_graphs):
        l_node_ids = np.random.choice(
            np.arange(num_nodes*2), size=num_nodes, replace=False)
        node_ids = np.append(node_ids, l_node_ids)
        _, l_u_indices = np.unique(l_node_ids, return_index=True)
        u_indices = np.append(u_indices, l_u_indices)
        ngraph_ids = np.append(ngraph_ids, np.full(num_nodes, i))
        src_ids = np.append(src_ids, np.random.choice(
            l_node_ids, size=num_edges))
        dst_ids = np.append(dst_ids, np.random.choice(
            l_node_ids, size=num_edges))
        egraph_ids = np.append(egraph_ids, np.full(num_edges, i))
    ndata = {'feat': np.random.rand(num_nodes*num_graphs, num_dims),
             'label': np.random.randint(2, size=num_nodes*num_graphs)}
423
    ngraph_ids = ['graph_{}'.format(id) for id in ngraph_ids]
424
    node_data = NodeData(node_ids, ndata, graph_id=ngraph_ids)
425
    egraph_ids = ['graph_{}'.format(id) for id in egraph_ids]
426
427
    edata = {'feat': np.random.rand(
        num_edges*num_graphs, num_dims), 'label': np.random.randint(2, size=num_edges*num_graphs)}
428
    edge_data = EdgeData(src_ids, dst_ids, edata, graph_id=egraph_ids)
429
430
    gdata = {'feat': np.random.rand(num_graphs, num_dims),
             'label': np.random.randint(2, size=num_graphs)}
431
432
    graph_ids = ['graph_{}'.format(id) for id in np.arange(num_graphs)]
    graph_data = GraphData(graph_ids, gdata)
433
    graphs, data_dict = DGLGraphConstructor.construct_graphs(
434
435
436
437
        node_data, edge_data, graph_data)
    assert len(graphs) == num_graphs
    assert len(data_dict) == len(gdata)
    for k, v in data_dict.items():
438
439
        assert F.dtype(v) != F.float64
        assert F.array_equal(F.tensor(gdata[k], dtype=F.dtype(v)), v)
440
441
442
443
444
445
446
447
448
449
450
451
    for i, g in enumerate(graphs):
        assert g.is_homogeneous
        assert g.num_nodes() == num_nodes
        assert g.num_edges() == num_edges

        def assert_data(lhs, rhs, size, node=False):
            for key, value in lhs.items():
                assert key in rhs
                value = value[i*size:(i+1)*size]
                if node:
                    indices = u_indices[i*size:(i+1)*size]
                    value = value[indices]
452
453
454
                assert F.dtype(rhs[key]) != F.float64
                assert F.array_equal(
                    F.tensor(value, dtype=F.dtype(rhs[key])), rhs[key])
455
456
457
458
        assert_data(ndata, g.ndata, num_nodes, node=True)
        assert_data(edata, g.edata, num_edges)

    # Graph IDs found in node/edge CSV but not in graph CSV
459
    graph_data = GraphData(np.arange(num_graphs-2), {})
460
461
    expect_except = False
    try:
462
        _, _ = DGLGraphConstructor.construct_graphs(
463
464
465
466
467
468
469
            node_data, edge_data, graph_data)
    except:
        expect_except = True
    assert expect_except


def _test_DefaultDataParser():
470
    from dgl.data.csv_dataset_base import DefaultDataParser
471
472
473
474
475
476
477
478
479
480
481
482
483
    # common csv
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        num_nodes = 5
        num_labels = 3
        num_dims = 2
        node_id = np.arange(num_nodes)
        label = np.random.randint(num_labels, size=num_nodes)
        feat = np.random.rand(num_nodes, num_dims)
        df = pd.DataFrame({'node_id': node_id, 'label': label,
                           'feat': [line.tolist() for line in feat],
                           })
        df.to_csv(csv_path, index=False)
484
        dp = DefaultDataParser()
485
486
487
488
489
490
491
492
493
494
495
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert np.array_equal(node_id, dt['node_id'])
        assert np.array_equal(label, dt['label'])
        assert np.array_equal(feat, dt['feat'])
    # string consists of non-numeric values
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': ['a', 'b', 'c'],
                           })
        df.to_csv(csv_path, index=False)
496
        dp = DefaultDataParser()
497
498
499
500
501
502
503
504
505
506
507
508
509
        df = pd.read_csv(csv_path)
        expect_except = False
        try:
            dt = dp(df)
        except:
            expect_except = True
        assert expect_except
    # csv has index column which is ignored as it's unnamed
    with tempfile.TemporaryDirectory() as test_dir:
        csv_path = os.path.join(test_dir, "nodes.csv")
        df = pd.DataFrame({'label': [1, 2, 3],
                           })
        df.to_csv(csv_path)
510
        dp = DefaultDataParser()
511
512
513
514
515
516
        df = pd.read_csv(csv_path)
        dt = dp(df)
        assert len(dt) == 1


def _test_load_yaml_with_sanity_check():
517
    from dgl.data.csv_dataset_base import load_yaml_with_sanity_check
518
519
520
521
522
523
524
    with tempfile.TemporaryDirectory() as test_dir:
        yaml_path = os.path.join(test_dir, 'meta.yaml')
        # workable but meaningless usually
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
525
        meta = load_yaml_with_sanity_check(yaml_path)
526
527
528
529
530
531
532
533
534
535
536
537
        assert meta.version == '1.0.0'
        assert meta.dataset_name == 'default'
        assert meta.separator == ','
        assert len(meta.node_data) == 0
        assert len(meta.edge_data) == 0
        assert meta.graph_data is None
        # minimum with required fields only
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
538
        meta = load_yaml_with_sanity_check(yaml_path)
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        for ndata in meta.node_data:
            assert ndata.file_name == 'nodes.csv'
            assert ndata.ntype == '_V'
            assert ndata.graph_id_field == 'graph_id'
            assert ndata.node_id_field == 'node_id'
        for edata in meta.edge_data:
            assert edata.file_name == 'edges.csv'
            assert edata.etype == ['_V', '_E', '_V']
            assert edata.graph_id_field == 'graph_id'
            assert edata.src_id_field == 'src_id'
            assert edata.dst_id_field == 'dst_id'
        # optional fields are specified
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default',
                     'separator': '|',
                     'node_data': [{'file_name': 'nodes.csv', 'ntype': 'user', 'graph_id_field': 'xxx', 'node_id_field': 'xxx'}],
                     'edge_data': [{'file_name': 'edges.csv', 'etype': ['user', 'follow', 'user'], 'graph_id_field':'xxx', 'src_id_field':'xxx', 'dst_id_field':'xxx'}],
                     'graph_data': {'file_name': 'graph.csv', 'graph_id_field': 'xxx'}
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
559
        meta = load_yaml_with_sanity_check(yaml_path)
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
        assert len(meta.node_data) == 1
        ndata = meta.node_data[0]
        assert ndata.ntype == 'user'
        assert ndata.graph_id_field == 'xxx'
        assert ndata.node_id_field == 'xxx'
        assert len(meta.edge_data) == 1
        edata = meta.edge_data[0]
        assert edata.etype == ['user', 'follow', 'user']
        assert edata.graph_id_field == 'xxx'
        assert edata.src_id_field == 'xxx'
        assert edata.dst_id_field == 'xxx'
        assert meta.graph_data is not None
        assert meta.graph_data.file_name == 'graph.csv'
        assert meta.graph_data.graph_id_field == 'xxx'
        # some required fields are missing
        yaml_data = {'dataset_name': 'default',
                     'node_data': [], 'edge_data': []}
        for field in yaml_data.keys():
            ydata = {k: v for k, v in yaml_data.items()}
            ydata.pop(field)
            with open(yaml_path, 'w') as f:
                yaml.dump(ydata, f, sort_keys=False)
            expect_except = False
            try:
584
                meta = load_yaml_with_sanity_check(yaml_path)
585
586
587
588
589
590
591
592
593
594
595
            except:
                expect_except = True
            assert expect_except
        # inapplicable version
        yaml_data = {'version': '0.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes_0.csv'}],
                     'edge_data': [{'file_name': 'edges_0.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
596
            meta = load_yaml_with_sanity_check(yaml_path)
597
598
599
600
601
602
603
604
605
606
607
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate node types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}, {'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
608
            meta = load_yaml_with_sanity_check(yaml_path)
609
610
611
612
613
614
615
616
617
618
619
        except DGLError:
            expect_except = True
        assert expect_except
        # duplicate edge types
        yaml_data = {'version': '1.0.0', 'dataset_name': 'default', 'node_data': [{'file_name': 'nodes.csv'}],
                     'edge_data': [{'file_name': 'edges.csv'}, {'file_name': 'edges.csv'}],
                     }
        with open(yaml_path, 'w') as f:
            yaml.dump(yaml_data, f, sort_keys=False)
        expect_except = False
        try:
620
            meta = load_yaml_with_sanity_check(yaml_path)
621
622
623
624
625
626
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_node_data_from_csv():
627
    from dgl.data.csv_dataset_base import MetaNode, NodeData, DefaultDataParser
628
629
630
631
632
633
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        # minimum
        df = pd.DataFrame({'node_id': np.arange(num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
634
635
636
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
637
638
639
640
641
642
643
644
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 0

        # common case
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                          'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
645
646
647
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
648
649
650
651
652
653
654
655
656
657
658
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(np.full(num_nodes, 0), node_data.graph_id)
        assert node_data.type == '_V'

        # add more fields into nodes.csv
        df = pd.DataFrame({'node_id': np.arange(num_nodes), 'label': np.random.randint(
            3, size=num_nodes), 'graph_id': np.full(num_nodes, 1)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
659
660
661
        meta_node = MetaNode(file_name=csv_path)
        node_data = NodeData.load_from_csv(
            meta_node, DefaultDataParser())
662
663
664
665
666
667
668
669
670
671
        assert np.array_equal(df['node_id'], node_data.id)
        assert len(node_data.data) == 1
        assert np.array_equal(df['label'], node_data.data['label'])
        assert np.array_equal(df['graph_id'], node_data.graph_id)
        assert node_data.type == '_V'

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_nodes)})
        csv_path = os.path.join(test_dir, 'nodes.csv')
        df.to_csv(csv_path, index=False)
672
        meta_node = MetaNode(file_name=csv_path)
673
674
        expect_except = False
        try:
675
676
            NodeData.load_from_csv(
                meta_node, DefaultDataParser())
677
678
679
680
681
682
        except:
            expect_except = True
        assert expect_except


def _test_load_edge_data_from_csv():
683
    from dgl.data.csv_dataset_base import MetaEdge, EdgeData, DefaultDataParser
684
685
686
687
688
689
690
691
692
    with tempfile.TemporaryDirectory() as test_dir:
        num_nodes = 100
        num_edges = 1000
        # minimum
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
693
694
695
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
696
697
698
699
700
701
702
703
704
705
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 0

        # common case
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
706
707
708
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 1
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(np.full(num_edges, 0), edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # add more fields into edges.csv
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'graph_id': np.arange(num_edges),
                           'feat': np.random.randint(3, size=num_edges),
                           'label': np.random.randint(3, size=num_edges)})
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
724
725
726
        meta_edge = MetaEdge(file_name=csv_path)
        edge_data = EdgeData.load_from_csv(
            meta_edge, DefaultDataParser())
727
728
729
730
731
732
733
734
735
736
737
738
739
        assert np.array_equal(df['src_id'], edge_data.src)
        assert np.array_equal(df['dst_id'], edge_data.dst)
        assert len(edge_data.data) == 2
        assert np.array_equal(df['feat'], edge_data.data['feat'])
        assert np.array_equal(df['label'], edge_data.data['label'])
        assert np.array_equal(df['graph_id'], edge_data.graph_id)
        assert edge_data.type == ('_V', '_E', '_V')

        # required headers are missing
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
740
        meta_edge = MetaEdge(file_name=csv_path)
741
742
        expect_except = False
        try:
743
744
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
745
746
747
748
749
750
751
        except DGLError:
            expect_except = True
        assert expect_except
        df = pd.DataFrame({'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        csv_path = os.path.join(test_dir, 'edges.csv')
        df.to_csv(csv_path, index=False)
752
        meta_edge = MetaEdge(file_name=csv_path)
753
754
        expect_except = False
        try:
755
756
            EdgeData.load_from_csv(
                meta_edge, DefaultDataParser())
757
758
759
760
761
762
        except DGLError:
            expect_except = True
        assert expect_except


def _test_load_graph_data_from_csv():
763
    from dgl.data.csv_dataset_base import MetaGraph, GraphData, DefaultDataParser
764
765
766
767
768
769
    with tempfile.TemporaryDirectory() as test_dir:
        num_graphs = 100
        # minimum
        df = pd.DataFrame({'graph_id': np.arange(num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
770
771
772
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
773
774
775
776
777
778
779
780
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 0

        # common case
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                          'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
781
782
783
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
784
785
786
787
788
789
790
791
792
793
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 1
        assert np.array_equal(df['label'], graph_data.data['label'])

        # add more fields into graph.csv
        df = pd.DataFrame({'graph_id': np.arange(num_graphs),
                           'feat': np.random.randint(3, size=num_graphs),
                           'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
794
795
796
        meta_graph = MetaGraph(file_name=csv_path)
        graph_data = GraphData.load_from_csv(
            meta_graph, DefaultDataParser())
797
798
799
800
801
802
803
804
805
        assert np.array_equal(df['graph_id'], graph_data.graph_id)
        assert len(graph_data.data) == 2
        assert np.array_equal(df['feat'], graph_data.data['feat'])
        assert np.array_equal(df['label'], graph_data.data['label'])

        # required header is missing
        df = pd.DataFrame({'label': np.random.randint(3, size=num_graphs)})
        csv_path = os.path.join(test_dir, 'graph.csv')
        df.to_csv(csv_path, index=False)
806
        meta_graph = MetaGraph(file_name=csv_path)
807
808
        expect_except = False
        try:
809
810
            GraphData.load_from_csv(
                meta_graph, DefaultDataParser())
811
812
813
814
815
        except DGLError:
            expect_except = True
        assert expect_except


816
def _test_CSVDataset_single():
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges, num_dims)
        label_edata = np.random.randint(2, size=num_edges)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)

        # load CSVDataset
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
867
            csv_dataset = data.CSVDataset(
868
869
870
871
872
873
874
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == 1
            g = csv_dataset[0]
            assert not g.is_homogeneous
            assert csv_dataset.has_cache()
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
875
                assert F.array_equal(F.tensor(feat_ndata, dtype=F.float32),
876
877
878
879
880
                                     g.nodes[ntype].data['feat'])
                assert np.array_equal(label_ndata,
                                      F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
881
                assert F.array_equal(F.tensor(feat_edata, dtype=F.float32),
882
883
884
885
886
                                     g.edges[etype].data['feat'])
                assert np.array_equal(label_edata,
                                      F.asnumpy(g.edges[etype].data['label']))


887
def _test_CSVDataset_multiple():
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        num_dims = 3
        feat_ndata = np.random.rand(num_nodes*num_graphs, num_dims)
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        feat_edata = np.random.rand(num_edges*num_graphs, num_dims)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'feat': [line.tolist() for line in feat_edata],
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        feat_gdata = np.random.rand(num_graphs, num_dims)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'feat': [line.tolist() for line in feat_gdata],
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

944
        # load CSVDataset with default node/edge/gdata_parser
945
946
947
948
949
        for force_reload in [True, False]:
            if not force_reload:
                # remove original node data file to verify reload from cached files
                os.remove(nodes_csv_path_0)
                assert not os.path.exists(nodes_csv_path_0)
950
            csv_dataset = data.CSVDataset(
951
952
953
954
955
956
                test_dir, force_reload=force_reload)
            assert len(csv_dataset) == num_graphs
            assert csv_dataset.has_cache()
            assert len(csv_dataset.data) == 2
            assert 'feat' in csv_dataset.data
            assert 'label' in csv_dataset.data
957
            assert F.array_equal(F.tensor(feat_gdata, dtype=F.float32),
958
                                 csv_dataset.data['feat'])
959
            for i, (g, g_data) in enumerate(csv_dataset):
960
                assert not g.is_homogeneous
961
                assert F.asnumpy(g_data['label']) == label_gdata[i]
962
                assert F.array_equal(g_data['feat'], F.tensor(feat_gdata[i], dtype=F.float32))
963
964
                for ntype in g.ntypes:
                    assert g.num_nodes(ntype) == num_nodes
965
                    assert F.array_equal(F.tensor(feat_ndata[i*num_nodes:(i+1)*num_nodes], dtype=F.float32),
966
967
968
969
970
                                         g.nodes[ntype].data['feat'])
                    assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes],
                                          F.asnumpy(g.nodes[ntype].data['label']))
                for etype in g.etypes:
                    assert g.num_edges(etype) == num_edges
971
                    assert F.array_equal(F.tensor(feat_edata[i*num_edges:(i+1)*num_edges], dtype=F.float32),
972
973
974
975
976
                                         g.edges[etype].data['feat'])
                    assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges],
                                          F.asnumpy(g.edges[etype].data['label']))


977
def _test_CSVDataset_customized_data_parser():
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path_0 = os.path.join(test_dir, "test_edges_0.csv")
        edges_csv_path_1 = os.path.join(test_dir, "test_edges_1.csv")
        nodes_csv_path_0 = os.path.join(test_dir, "test_nodes_0.csv")
        nodes_csv_path_1 = os.path.join(test_dir, "test_nodes_1.csv")
        graph_csv_path = os.path.join(test_dir, "test_graph.csv")
        meta_yaml_data = {'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path_0),
                                         'ntype': 'user',
                                         },
                                        {'file_name': os.path.basename(nodes_csv_path_1),
                                            'ntype': 'item',
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path_0),
                                         'etype': ['user', 'follow', 'user'],
                                         },
                                        {'file_name': os.path.basename(edges_csv_path_1),
                                         'etype': ['user', 'like', 'item'],
                                         }],
                          'graph_data': {'file_name': os.path.basename(graph_csv_path)}
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_graphs = 10
        label_ndata = np.random.randint(2, size=num_nodes*num_graphs)
        df = pd.DataFrame({'node_id': np.hstack([np.arange(num_nodes) for _ in range(num_graphs)]),
                           'label': label_ndata,
                           'graph_id': np.hstack([np.full(num_nodes, i) for i in range(num_graphs)])
                           })
        df.to_csv(nodes_csv_path_0, index=False)
        df.to_csv(nodes_csv_path_1, index=False)
        label_edata = np.random.randint(2, size=num_edges*num_graphs)
        df = pd.DataFrame({'src_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'dst_id': np.hstack([np.random.randint(num_nodes, size=num_edges) for _ in range(num_graphs)]),
                           'label': label_edata,
                           'graph_id': np.hstack([np.full(num_edges, i) for i in range(num_graphs)])
                           })
        df.to_csv(edges_csv_path_0, index=False)
        df.to_csv(edges_csv_path_1, index=False)
        label_gdata = np.random.randint(2, size=num_graphs)
        df = pd.DataFrame({'label': label_gdata,
                           'graph_id': np.arange(num_graphs)
                           })
        df.to_csv(graph_csv_path, index=False)

        class CustDataParser:
            def __call__(self, df):
                data = {}
                for header in df:
                    dt = df[header].to_numpy().squeeze()
                    if header == 'label':
                        dt += 2
                    data[header] = dt
                return data
1036
1037
1038
1039
1040
1041
        # load CSVDataset with customized node/edge/gdata_parser
        # specify via dict[ntype/etype, callable]
        csv_dataset = data.CSVDataset(
            test_dir, force_reload=True, ndata_parser={'user': CustDataParser()},
            edata_parser={('user', 'like', 'item'): CustDataParser()},
            gdata_parser=CustDataParser())
1042
1043
1044
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
        assert 'label' in csv_dataset.data
1045
        for i, (g, g_data) in enumerate(csv_dataset):
1046
            assert not g.is_homogeneous
1047
            assert F.asnumpy(g_data['label']) == label_gdata[i] + 2
1048
1049
1050
1051
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2 if ntype == 'user' else 0
                assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes]+offset,
1052
                                    F.asnumpy(g.nodes[ntype].data['label']))
1053
1054
1055
1056
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2 if etype == 'like' else 0
                assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges]+offset,
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
                                    F.asnumpy(g.edges[etype].data['label']))
        # specify via callable
        csv_dataset = data.CSVDataset(
            test_dir, force_reload=True, ndata_parser=CustDataParser(),
            edata_parser=CustDataParser(), gdata_parser=CustDataParser())
        assert len(csv_dataset) == num_graphs
        assert len(csv_dataset.data) == 1
        assert 'label' in csv_dataset.data
        for i, (g, g_data) in enumerate(csv_dataset):
            assert not g.is_homogeneous
            assert F.asnumpy(g_data['label']) == label_gdata[i] + 2
            for ntype in g.ntypes:
                assert g.num_nodes(ntype) == num_nodes
                offset = 2
                assert np.array_equal(label_ndata[i*num_nodes:(i+1)*num_nodes]+offset,
                                    F.asnumpy(g.nodes[ntype].data['label']))
            for etype in g.etypes:
                assert g.num_edges(etype) == num_edges
                offset = 2
                assert np.array_equal(label_edata[i*num_edges:(i+1)*num_edges]+offset,
                                    F.asnumpy(g.edges[etype].data['label']))
1078
1079
1080


def _test_NodeEdgeGraphData():
1081
    from dgl.data.csv_dataset_base import NodeData, EdgeData, GraphData
1082
1083
1084
    # NodeData basics
    num_nodes = 100
    node_ids = np.arange(num_nodes, dtype=np.float)
1085
    ndata = NodeData(node_ids, {})
1086
    assert np.array_equal(ndata.id, node_ids)
1087
1088
1089
1090
1091
1092
    assert len(ndata.data) == 0
    assert ndata.type == '_V'
    assert np.array_equal(ndata.graph_id, np.full(num_nodes, 0))
    # NodeData more
    data = {'feat': np.random.rand(num_nodes, 3)}
    graph_id = np.arange(num_nodes)
1093
    ndata = NodeData(node_ids, data, type='user', graph_id=graph_id)
1094
1095
1096
1097
1098
1099
1100
1101
1102
    assert ndata.type == 'user'
    assert np.array_equal(ndata.graph_id, graph_id)
    assert len(ndata.data) == len(data)
    for k, v in data.items():
        assert k in ndata.data
        assert np.array_equal(ndata.data[k], v)
    # NodeData except
    expect_except = False
    try:
1103
        NodeData(np.arange(num_nodes), {'feat': np.random.rand(
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
            num_nodes+1, 3)}, graph_id=np.arange(num_nodes-1))
    except:
        expect_except = True
    assert expect_except

    # EdgeData basics
    num_nodes = 100
    num_edges = 1000
    src_ids = np.random.randint(num_nodes, size=num_edges)
    dst_ids = np.random.randint(num_nodes, size=num_edges)
1114
    edata = EdgeData(src_ids, dst_ids, {})
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == ('_V', '_E', '_V')
    assert len(edata.data) == 0
    assert np.array_equal(edata.graph_id, np.full(num_edges, 0))
    # EdageData more
    src_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    dst_ids = np.random.randint(num_nodes, size=num_edges).astype(np.float)
    data = {'feat': np.random.rand(num_edges, 3)}
    etype = ('user', 'like', 'item')
    graph_ids = np.arange(num_edges)
1126
    edata = EdgeData(src_ids, dst_ids, data,
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
                            type=etype, graph_id=graph_ids)
    assert np.array_equal(edata.src, src_ids)
    assert np.array_equal(edata.dst, dst_ids)
    assert edata.type == etype
    assert len(edata.data) == len(data)
    for k, v in data.items():
        assert k in edata.data
        assert np.array_equal(edata.data[k], v)
    assert np.array_equal(edata.graph_id, graph_ids)
    # EdgeData except
    expect_except = False
    try:
1139
        EdgeData(np.arange(num_edges), np.arange(
1140
1141
1142
1143
1144
1145
1146
1147
            num_edges+1), {'feat': np.random.rand(num_edges-1, 3)}, graph_id=np.arange(num_edges+2))
    except:
        expect_except = True
    assert expect_except

    # GraphData basics
    num_graphs = 10
    graph_ids = np.arange(num_graphs)
1148
    gdata = GraphData(graph_ids, {})
1149
1150
1151
1152
1153
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == 0
    # GraphData more
    graph_ids = np.arange(num_graphs).astype(np.float)
    data = {'feat': np.random.rand(num_graphs, 3)}
1154
    gdata = GraphData(graph_ids, data)
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
    assert np.array_equal(gdata.graph_id, graph_ids)
    assert len(gdata.data) == len(data)
    for k, v in data.items():
        assert k in gdata.data
        assert np.array_equal(gdata.data[k], v)


@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_csvdataset():
    _test_NodeEdgeGraphData()
1165
    _test_construct_graphs_node_ids()
1166
1167
1168
1169
1170
1171
1172
1173
    _test_construct_graphs_homo()
    _test_construct_graphs_hetero()
    _test_construct_graphs_multiple()
    _test_DefaultDataParser()
    _test_load_yaml_with_sanity_check()
    _test_load_node_data_from_csv()
    _test_load_edge_data_from_csv()
    _test_load_graph_data_from_csv()
1174
1175
1176
    _test_CSVDataset_single()
    _test_CSVDataset_multiple()
    _test_CSVDataset_customized_data_parser()
1177

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_add_nodepred_split():
    dataset = data.AmazonCoBuyComputerDataset()
    print('train_mask' in dataset[0].ndata)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1])
    assert 'train_mask' in dataset[0].ndata

    dataset = data.AIFBDataset()
    print('train_mask' in dataset[0].nodes['Publikationen'].data)
    data.utils.add_nodepred_split(dataset, [0.8, 0.1, 0.1], ntype='Publikationen')
    assert 'train_mask' in dataset[0].nodes['Publikationen'].data

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred1():
    ds = data.AmazonCoBuyComputerDataset()
    print('train_mask' in ds[0].ndata)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].num_nodes() == ds[0].num_nodes()
    assert new_ds[0].num_edges() == ds[0].num_edges()
    assert 'train_mask' in new_ds[0].ndata

    ds = data.AIFBDataset()
    print('train_mask' in ds[0].nodes['Personen'].data)
    new_ds = data.AsNodePredDataset(ds, [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert len(new_ds) == 1
    assert new_ds[0].ntypes == ds[0].ntypes
    assert new_ds[0].canonical_etypes == ds[0].canonical_etypes
    assert 'train_mask' in new_ds[0].nodes['Personen'].data

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred2():
    # test proper reprocessing

    # create
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
    # read from cache
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.8, 0.1, 0.1])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.8)
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AmazonCoBuyComputerDataset(), [0.1, 0.1, 0.8])
    assert F.sum(F.astype(ds[0].ndata['train_mask'], F.int32), 0) == int(ds[0].num_nodes() * 0.1)

    # create
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
    # read from cache
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.8, 0.1, 0.1], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.8)
    # invalid cache, re-read
    ds = data.AsNodePredDataset(data.AIFBDataset(), [0.1, 0.1, 0.8], 'Personen', verbose=True)
    assert F.sum(F.astype(ds[0].nodes['Personen'].data['train_mask'], F.int32), 0) == int(ds[0].num_nodes('Personen') * 0.1)
1231

Jinjing Zhou's avatar
Jinjing Zhou committed
1232
1233
1234
1235
1236
1237
@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_nodepred_ogb():
    from ogb.nodeproppred import DglNodePropPredDataset
    ds = data.AsNodePredDataset(DglNodePropPredDataset("ogbn-arxiv"), split_ratio=None, verbose=True)
    # force generate new split
    ds = data.AsNodePredDataset(DglNodePropPredDataset("ogbn-arxiv"), split_ratio=[0.7, 0.2, 0.1], verbose=True)
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_linkpred():
    # create
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.8, 0.1, 0.1], neg_ratio=1, verbose=True)
    # Cora has 10556 edges, 10% test edges can be 1057
    assert ds.test_edges[0][0].shape[0] == 1057
    # negative samples, not guaranteed, so the assert is in a relaxed range
    assert 1000 <= ds.test_edges[1][0].shape[0] <= 1057
    # read from cache
    ds = data.AsLinkPredDataset(data.CoraGraphDataset(), split_ratio=[0.7, 0.1, 0.2], neg_ratio=2, verbose=True)
    assert ds.test_edges[0][0].shape[0] == 2112
    # negative samples, not guaranteed to be ratio 2, so the assert is in a relaxed range
    assert 4000 < ds.test_edges[1][0].shape[0] <= 4224


@unittest.skipIf(dgl.backend.backend_name != 'pytorch', reason="ogb only supports pytorch")
def test_as_linkpred_ogb():
    from ogb.linkproppred import DglLinkPropPredDataset
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=None, verbose=True)
    # original dataset has 46329 test edges
    assert ds.test_edges[0][0].shape[0] == 46329
    # force generate new split
    ds = data.AsLinkPredDataset(DglLinkPropPredDataset("ogbl-collab"), split_ratio=[0.7, 0.2, 0.1], verbose=True)
    assert ds.test_edges[0][0].shape[0] == 235812

1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
@unittest.skipIf(F._default_context_str == 'gpu', reason="Datasets don't need to be tested on GPU.")
def test_as_nodepred_csvdataset():
    with tempfile.TemporaryDirectory() as test_dir:
        # generate YAML/CSVs
        meta_yaml_path = os.path.join(test_dir, "meta.yaml")
        edges_csv_path = os.path.join(test_dir, "test_edges.csv")
        nodes_csv_path = os.path.join(test_dir, "test_nodes.csv")
        meta_yaml_data = {'version': '1.0.0', 'dataset_name': 'default_name',
                          'node_data': [{'file_name': os.path.basename(nodes_csv_path)
                                         }],
                          'edge_data': [{'file_name': os.path.basename(edges_csv_path)
                                         }],
                          }
        with open(meta_yaml_path, 'w') as f:
            yaml.dump(meta_yaml_data, f, sort_keys=False)
        num_nodes = 100
        num_edges = 500
        num_dims = 3
        num_classes = num_nodes
        feat_ndata = np.random.rand(num_nodes, num_dims)
        label_ndata = np.arange(num_classes)
        df = pd.DataFrame({'node_id': np.arange(num_nodes),
                           'label': label_ndata,
                           'feat': [line.tolist() for line in feat_ndata],
                           })
        df.to_csv(nodes_csv_path, index=False)
        df = pd.DataFrame({'src_id': np.random.randint(num_nodes, size=num_edges),
                           'dst_id': np.random.randint(num_nodes, size=num_edges),
                           })
        df.to_csv(edges_csv_path, index=False)

1295
        ds = data.CSVDataset(test_dir, force_reload=True)
1296
1297
1298
1299
        assert 'feat' in ds[0].ndata
        assert 'label' in ds[0].ndata
        assert 'train_mask' not in ds[0].ndata
        assert not hasattr(ds[0], 'num_classes')
1300
        new_ds = data.AsNodePredDataset(ds, split_ratio=[0.8, 0.1, 0.1], force_reload=True)
1301
1302
1303
1304
1305
        assert new_ds.num_classes == num_classes
        assert 'feat' in new_ds[0].ndata
        assert 'label' in new_ds[0].ndata
        assert 'train_mask' in new_ds[0].ndata

1306
if __name__ == '__main__':
1307
    test_minigc()
1308
    test_gin()
1309
    test_data_hash()
1310
1311
1312
    test_tudataset_regression()
    test_fraud()
    test_fakenews()
1313
    test_extract_archive()
1314
    test_csvdataset()
1315
1316
1317
    test_add_nodepred_split()
    test_as_nodepred1()
    test_as_nodepred2()
1318
    test_as_nodepred_csvdataset()