kernel.cc 31 KB
Newer Older
sangwzh's avatar
sangwzh committed
1
// !!! This is a file automatically generated by hipify!!!
2
/**
3
 *  Copyright (c) 2020 by Contributors
4
5
 * @file array/kernel.cc
 * @brief New kernels
6
7
 */
#include <dgl/base_heterograph.h>
8
#include <dgl/packed_func_ext.h>
9
10

#include "../c_api_common.h"
sangwzh's avatar
sangwzh committed
11
#include "check.h"
12
#include "kernel_decl.h"
13
14
15
16
17

using namespace dgl::runtime;

namespace dgl {
namespace aten {
18
namespace {}  // namespace
19

20
/** @brief Generalized Sparse Matrix-Matrix Multiplication. */
21
22
23
void SpMM(
    const std::string& op, const std::string& reduce, HeteroGraphPtr graph,
    NDArray ufeat, NDArray efeat, NDArray out, std::vector<NDArray> out_aux) {
24
  // TODO(zihao): format tuning
25
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
26
27
28
29
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
30
      ATEN_FLOAT_TYPE_SWITCH_16BITS(out->dtype, Dtype, XPU, "Feature data", {
31
        if (format == SparseFormat::kCSC) {
32
          SpMMCsr<XPU, IdType, Dtype>(
33
34
              op, reduce, bcast, graph->GetCSCMatrix(0), ufeat, efeat, out,
              out_aux);
35
        } else if (format == SparseFormat::kCOO) {
36
          SpMMCoo<XPU, IdType, Dtype>(
37
38
              op, reduce, bcast, graph->GetCOOMatrix(0), ufeat, efeat, out,
              out_aux);
39
        } else {
40
          LOG(FATAL) << "SpMM only supports CSC and COO formats";
41
42
43
44
45
46
        }
      });
    });
  });
}

47
/** @brief Generalized segmented dense Matrix-Matrix Multiplication. */
48
49
50
void SegmentMM(
    const NDArray A, const NDArray B, NDArray C, const NDArray seglen_A,
    bool A_trans, bool B_trans) {
51
  CHECK_EQ(A->ndim, 2) << "segment_mm expects a 2D tensor for the first input.";
52
53
  CHECK_EQ(B->ndim, 3)
      << "segment_mm expects a 3D tensor for the second input.";
54
55
56
  CHECK(!A_trans);
  if (B_trans) {
    CHECK_EQ(A->shape[1], B->shape[2])
57
        << "segment_mm expects A.shape[1] == B.shape[2] when B_trans=True";
58
  } else {
59
60
    CHECK_EQ(A->shape[1], B->shape[1])
        << "segment_mm expects A.shape[1] == B.shape[1]";
61
62
  }
  CHECK_EQ(B->shape[0], seglen_A.NumElements())
63
      << "segment_mm expects len(seglen_A) == B.shape[0]";
64
  CHECK_EQ(seglen_A->ctx.device_type, kDGLCPU)
65
66
67
      << "segment_mm expects seglen_A to be on CPU.";
  CHECK(A->ctx == B->ctx)
      << "segment_mm expects A and B to be of the same device";
68
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "SegmentMM", {
Israt Nisa's avatar
Israt Nisa committed
69
    ATEN_ID_TYPE_SWITCH(seglen_A->dtype, IdType, {
70
71
      ATEN_FLOAT_TYPE_SWITCH_16BITS(A->dtype, Dtype, XPU, "Feature data", {
        SegmentMM<XPU, IdType, Dtype>(A, B, C, seglen_A, A_trans, B_trans);
72
73
74
75
76
      });
    });
  });
}

77
78
79
80
81
82
void SegmentMMBackwardB(
    const NDArray A, const NDArray dC, NDArray dB, const NDArray seglen) {
  CHECK_EQ(A->ndim, 2) << "segment_mm_backward operator expects a 2D tensor "
                          "for the first input.";
  CHECK_EQ(dC->ndim, 2) << "segment_mm_backward operator expects a 2D tensor "
                           "for the second input.";
83
  CHECK_EQ(seglen->ctx.device_type, kDGLCPU)
84
      << "segment_mm expects seglen to be on CPU.";
85
86
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "SegmentMMBackwardB", {
    ATEN_ID_TYPE_SWITCH(seglen->dtype, IdType, {
87
88
      ATEN_FLOAT_TYPE_SWITCH_16BITS(A->dtype, Dtype, XPU, "Feature data", {
        SegmentMMBackwardB<XPU, IdType, Dtype>(A, dC, dB, seglen);
Israt Nisa's avatar
Israt Nisa committed
89
90
91
92
93
      });
    });
  });
}

94
95
96
97
98
99
100
101
102
/** @brief Generalized Dense Matrix-Matrix Multiplication according to relation
 * types. */
void GatherMM(
    const NDArray A, const NDArray B, NDArray C, const NDArray idx_a,
    const NDArray idx_b) {
  CHECK_EQ(A->ndim, 2)
      << "gather_mm operator expects a 2D tensor for the first input.";
  CHECK_EQ(B->ndim, 3)
      << "gather_mm operator expects a 3D tensor for the second input.";
103
  CHECK(A->ctx == B->ctx)
104
      << "gather_mm expects all arguments to be on the same device.";
105
106
  if (aten::IsNullArray(idx_a)) {
    CHECK_EQ(A->shape[0], idx_b->shape[0])
107
        << "gather_mm expects len(idx_b) == A.shape[0] when idx_a is None.";
108
    CHECK(A->ctx == idx_b->ctx)
109
        << "gather_mm expects all arguments to be on the same device.";
110
111
  } else if (aten::IsNullArray(idx_b)) {
    CHECK_EQ(B->shape[0], idx_a->shape[0])
112
        << "gather_mm expects len(idx_a) == B.shape[0] when idx_b is None.";
113
    CHECK(A->ctx == idx_a->ctx)
114
        << "gather_mm expects all arguments to be on the same device.";
115
116
  } else {
    CHECK_EQ(idx_a->shape[0], idx_b->shape[0])
117
118
        << "gather_mm expects len(idx_a) == len(idx_b) when both idx_a and "
           "idx_b are given.";
119
    CHECK(A->ctx == idx_a->ctx && A->ctx == idx_b->ctx)
120
        << "gather_mm expects all arguments to be on the same device.";
121
  }
122
  const auto idtype = aten::IsNullArray(idx_a) ? idx_b->dtype : idx_a->dtype;
Israt Nisa's avatar
Israt Nisa committed
123
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "GatherMM", {
124
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
125
126
      ATEN_FLOAT_TYPE_SWITCH_16BITS(A->dtype, Dtype, XPU, "Feature data", {
        GatherMM<XPU, IdType, Dtype>(A, B, C, idx_a, idx_b);
Israt Nisa's avatar
Israt Nisa committed
127
128
129
130
131
      });
    });
  });
}

132
133
134
135
136
137
138
/** @brief Generalized Dense Matrix-Matrix Multiplication according to relation
 * types. */
void GatherMMScatter(
    const NDArray A, const NDArray B, NDArray C, const NDArray idx_a,
    const NDArray idx_b, const NDArray idx_c) {
  CHECK_EQ(A->ndim, 2)
      << "gather_mm_scatter expects a 2D tensor for the first input.";
139
  CHECK(A->ctx == B->ctx)
140
      << "gather_mm_scatter expects all arguments to be on the same device.";
141
142
  if (!aten::IsNullArray(idx_c))
    CHECK(A->ctx == idx_c->ctx)
143
        << "gather_mm_scatter expects all arguments to be on the same device.";
144
145
  if (aten::IsNullArray(idx_a) && !aten::IsNullArray(idx_b)) {
    CHECK_EQ(A->shape[0], idx_b->shape[0])
146
147
        << "gather_mm_scatter expects len(idx_b) == A.shape[0] when idx_a is "
           "None.";
148
    CHECK(A->ctx == idx_b->ctx)
149
        << "gather_mm_scatter expects all arguments to be on the same device.";
150
151
  } else if (aten::IsNullArray(idx_b) && !aten::IsNullArray(idx_a)) {
    CHECK_EQ(B->shape[0], idx_a->shape[0])
152
153
        << "gather_mm_scatter expects len(idx_a) == B.shape[0] when idx_b is "
           "None.";
154
    CHECK(A->ctx == idx_a->ctx)
155
        << "gather_mm_scatter expects all arguments to be on the same device.";
156
157
  } else if (!aten::IsNullArray(idx_b) && !aten::IsNullArray(idx_a)) {
    CHECK_EQ(idx_a->shape[0], idx_b->shape[0])
158
159
        << "gather_mm_scatter expects len(idx_a) == len(idx_b) "
        << "when both idx_a and idx_b are given.";
160
    CHECK(A->ctx == idx_a->ctx && A->ctx == idx_b->ctx)
161
        << "gather_mm_scatter expects all arguments to be on the same device.";
162
  }
Israt Nisa's avatar
Israt Nisa committed
163
  ATEN_XPU_SWITCH_CUDA(A->ctx.device_type, XPU, "GatherMM", {
164
    ATEN_ID_TYPE_SWITCH(idx_c->dtype, IdType, {
165
166
      ATEN_FLOAT_TYPE_SWITCH_16BITS(A->dtype, Dtype, XPU, "Feature data", {
        GatherMMScatter<XPU, IdType, Dtype>(A, B, C, idx_a, idx_b, idx_c);
Israt Nisa's avatar
Israt Nisa committed
167
168
169
170
171
      });
    });
  });
}

172
173
174
175
176
177
178
/** @brief Generalized Sparse Matrix-Matrix Multiplication with hetero-graph
 * support. */
void SpMMHetero(
    const std::string& op, const std::string& reduce, HeteroGraphPtr graph,
    const std::vector<NDArray>& ufeat_vec,
    const std::vector<NDArray>& efeat_vec, std::vector<NDArray>* out,
    std::vector<std::vector<NDArray>>* out_aux) {
179
180
181
182
183
184
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);

  std::vector<CSRMatrix> vec_graph;
  std::vector<dgl_type_t> ufeat_eid;
  std::vector<dgl_type_t> efeat_eid;
  std::vector<dgl_type_t> out_eid;
185
  auto pair = graph->meta_graph()->FindEdge(0);  // first etype
186
187
  NDArray ufeat_etype0 =
      (ufeat_vec.size() == 0) ? NullArray() : ufeat_vec[pair.first];
188
  NDArray efeat_etype0 = (efeat_vec.size() == 0) ? NullArray() : efeat_vec[0];
189
190
191
192
193
194
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
    vec_graph.push_back(graph->GetCSCMatrix(etype));
    auto pair = graph->meta_graph()->FindEdge(etype);
    ufeat_eid.push_back(pair.first);
    efeat_eid.push_back(etype);
    out_eid.push_back(pair.second);
195
    if (ufeat_etype0->shape[1] != ufeat_vec[pair.first]->shape[1])
196
197
      LOG(FATAL) << "Column width of the input node features of all etypes "
                    "must be same.";
198
    if (efeat_etype0->shape[1] != efeat_vec[etype]->shape[1])
199
200
      LOG(FATAL) << "Column width of the input edge features of all etypes "
                    "must be same.";
201
  }
202
  const auto& bcast = CalcBcastOff(op, ufeat_etype0, efeat_etype0);
203

204
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    ATEN_ID_TYPE_SWITCH(
        graph->DataType(), IdType, {
          ATEN_FLOAT_TYPE_SWITCH_16BITS(
              (*out)[out_eid[0]]->dtype, Dtype, XPU, "Feature data", {
                if (format == SparseFormat::kCSC) {
                  SpMMCsrHetero<XPU, IdType, Dtype>(
                      op, reduce, bcast, vec_graph, ufeat_vec, efeat_vec, out,
                      out_aux, ufeat_eid, out_eid);
                } else {
                  // TODO(Israt): Add support for COO format
                  LOG(FATAL)
                      << "SpMM only supports CSC format for graphs with number "
                      << "of relation types > 1";
                }
              });
        });
221
222
223
  });
}

224
/** @brief Generalized Sampled Dense-Dense Matrix Multiplication. */
225
226
227
void SDDMM(
    const std::string& op, HeteroGraphPtr graph, NDArray lhs, NDArray rhs,
    NDArray out, int lhs_target, int rhs_target) {
228
  // TODO(zihao): format tuning
229
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
230
  const auto& bcast = CalcBcastOff(op, lhs, rhs);
231
232
233

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
234
      ATEN_FLOAT_TYPE_SWITCH_16BITS(out->dtype, Dtype, XPU, "Feature data", {
235
        if (format == SparseFormat::kCSR) {
236
          SDDMMCsr<XPU, IdType, Dtype>(
237
238
              op, bcast, graph->GetCSRMatrix(0), lhs, rhs, out, lhs_target,
              rhs_target);
239
        } else if (format == SparseFormat::kCOO) {
240
          SDDMMCoo<XPU, IdType, Dtype>(
241
242
              op, bcast, graph->GetCOOMatrix(0), lhs, rhs, out, lhs_target,
              rhs_target);
243
        } else {
244
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
245
246
247
248
249
250
        }
      });
    });
  });
}

251
/**
252
 * @brief Find the src/dst/etype id based on the target 'u', 'v' or 'e'.
253
 *
254
255
256
 * @param graph The input graph.
 * @param target 'u', 'v' or 'e'. The target of the lhs or rhs data of an etype.
 * @param etype Relation type of the input graph.
257
258
259
 */
int get_typeid_by_target(HeteroGraphPtr graph, int target, dgl_type_t etype) {
  auto pair = graph->meta_graph()->FindEdge(etype);
260
261
  if (target == 0) return pair.first;
  if (target == 2) return pair.second;
262
263
264
  return etype;
}

265
/** @brief Generalized Sampled Dense-Dense Matrix Multiplication. */
266
267
268
269
void SDDMMHetero(
    const std::string& op, HeteroGraphPtr graph, std::vector<NDArray> lhs,
    std::vector<NDArray> rhs, std::vector<NDArray> out, int lhs_target,
    int rhs_target) {
270
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
271
272
273
274

  std::vector<dgl_type_t> lhs_eid;
  std::vector<dgl_type_t> rhs_eid;
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
275
276
    lhs_eid.push_back(get_typeid_by_target(graph, lhs_target, etype));
    rhs_eid.push_back(get_typeid_by_target(graph, rhs_target, etype));
277
  }
278
  const auto& bcast = CalcBcastOff(op, lhs[lhs_eid[0]], rhs[rhs_eid[0]]);
279

280
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
281
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
      ATEN_FLOAT_TYPE_SWITCH_16BITS(
          out[rhs_eid[0]]->dtype, Dtype, XPU, "Feature data", {
            if (format == SparseFormat::kCSR) {
              std::vector<CSRMatrix> vec_csr;
              for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes();
                   ++etype) {
                vec_csr.push_back(graph->GetCSRMatrix(etype));
              }
              SDDMMCsrHetero<XPU, IdType, Dtype>(
                  op, bcast, vec_csr, lhs, rhs, out, lhs_target, rhs_target,
                  lhs_eid, rhs_eid);
            } else if (format == SparseFormat::kCOO) {
              std::vector<COOMatrix> vec_coo;
              for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes();
                   ++etype) {
                vec_coo.push_back(graph->GetCOOMatrix(etype));
              }
              SDDMMCooHetero<XPU, IdType, Dtype>(
                  op, bcast, vec_coo, lhs, rhs, out, lhs_target, rhs_target,
                  lhs_eid, rhs_eid);
            } else {
              LOG(FATAL) << "SDDMM only supports CSR and COO formats";
            }
          });
306
307
308
309
    });
  });
}

310
/** @brief Generalized Edge_softmax op for forward */
311
312
313
void Edge_softmax_forward(
    const std::string& op, HeteroGraphPtr graph, NDArray ufeat, NDArray efeat,
    NDArray out) {
314
315
316
317
318
  // TODO(zhejiang): add gpu op for edge_softmax
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
319
320
321
322
323
      ATEN_FLOAT_TYPE_SWITCH_16BITS(
          out->dtype, Dtype, XPU, "edge_softmax out data", {
            Edge_softmax_csr_forward<XPU, IdType, Dtype>(
                op, bcast, graph->GetCSCMatrix(0), ufeat, efeat, out);
          });
324
325
326
327
    });
  });
}

328
/** @brief Generalized Edge_softmax op for backward */
329
330
331
void Edge_softmax_backward(
    const std::string& op, HeteroGraphPtr graph, NDArray out, NDArray sds,
    NDArray back_out, NDArray ufeat) {
332
333
334
335
336
  // TODO(zhejiang): add gpu op for edge_softmax
  const auto& bcast = CalcBcastOff(op, ufeat, sds);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax_back", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
337
338
339
340
341
      ATEN_FLOAT_TYPE_SWITCH_16BITS(
          out->dtype, Dtype, XPU, "edge_softmax out data_back", {
            Edge_softmax_csr_backward<XPU, IdType, Dtype>(
                op, bcast, graph->GetCSCMatrix(0), out, sds, back_out);
          });
342
343
344
345
    });
  });
}

346
NDArray GetEdgeMapping(HeteroGraphRef graph) {
347
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
348
349
350
351
352
353
354
  if (format == SparseFormat::kCSC) {
    return graph.sptr()->GetCSCMatrix(0).data;
  } else {
    return NullArray();
  }
}

355
/** @brief Segment reduce dispatch function. */
356
357
358
void SegmentReduceDispatch(
    const std::string& op, NDArray feat, NDArray offsets, NDArray out,
    NDArray arg) {
359
360
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "SegmentReduce", {
    ATEN_ID_TYPE_SWITCH(offsets->dtype, IdType, {
361
      ATEN_FLOAT_TYPE_SWITCH_16BITS(feat->dtype, Dtype, XPU, "Feature data", {
362
        SegmentReduce<XPU, IdType, Dtype>(op, feat, offsets, out, arg);
363
364
365
366
367
      });
    });
  });
}

368
/** @brief Scatter Add (on first dimension) dispatch function. */
369
370
371
void ScatterAddDispatch(NDArray feat, NDArray idx, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx->dtype, IdType, {
372
373
      ATEN_FLOAT_TYPE_SWITCH_16BITS(feat->dtype, Dtype, XPU, "Feature data", {
        ScatterAdd<XPU, IdType, Dtype>(feat, idx, out);
374
375
376
377
378
      });
    });
  });
}

379
380
381
382
383
384
/** @brief Update gradients (reduce op max/min) dispatch function on
 * heterogeneous graph. */
void UpdateGradMinMaxDispatchHetero(
    const HeteroGraphPtr& graph, const std::string& op,
    const std::vector<NDArray>& feat, const std::vector<NDArray>& idx,
    const std::vector<NDArray>& idx_etype, std::vector<NDArray>* out) {
385
386
387
388
  auto pair = graph->meta_graph()->FindEdge(0);  // checking the first etype
  auto src_id = pair.first;
  ATEN_XPU_SWITCH_CUDA(feat[src_id]->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx[src_id]->dtype, IdType, {
389
390
391
392
393
      ATEN_FLOAT_TYPE_SWITCH_16BITS(
          feat[src_id]->dtype, Dtype, XPU, "Feature data", {
            UpdateGradMinMax_hetero<XPU, IdType, Dtype>(
                graph, op, feat, idx, idx_etype, out);
          });
394
395
396
397
    });
  });
}

398
/** @brief Backward segment cmp dispatch function.*/
399
400
401
void BackwardSegmentCmpDispatch(NDArray feat, NDArray arg, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "BackwardSegmentCmp", {
    ATEN_ID_TYPE_SWITCH(arg->dtype, IdType, {
402
403
      ATEN_FLOAT_TYPE_SWITCH_16BITS(feat->dtype, Dtype, XPU, "Feature data", {
        BackwardSegmentCmp<XPU, IdType, Dtype>(feat, arg, out);
404
405
406
407
408
      });
    });
  });
}

409
std::pair<CSRMatrix, NDArray> CSRMM(
410
411
412
413
414
    CSRMatrix A, NDArray A_weights, CSRMatrix B, NDArray B_weights) {
  CHECK_EQ(A.num_cols, B.num_rows)
      << "The number of nodes of destination node type of the first graph must "
         "be the "
         "same as the number of nodes of source node type of the second graph.";
415
  CheckCtx(
416
      A.indptr->ctx, {A_weights, B_weights},
417
418
      {"A's edge weights", "B's edge weights"});
  CHECK_EQ(A.indptr->ctx, B.indptr->ctx) << "Device of two graphs must match.";
419
420
421
422
  CHECK_EQ(A.indptr->dtype, B.indptr->dtype)
      << "ID types of two graphs must match.";
  CHECK_EQ(A_weights->dtype, B_weights->dtype)
      << "Data types of two edge weights must match.";
423
424

  std::pair<CSRMatrix, NDArray> ret;
425
  ATEN_XPU_SWITCH_CUDA(A.indptr->ctx.device_type, XPU, "CSRMM", {
426
427
428
429
430
431
432
433
434
435
    ATEN_ID_TYPE_SWITCH(A.indptr->dtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
        ret = CSRMM<XPU, IdType, DType>(A, A_weights, B, B_weights);
      });
    });
  });
  return ret;
}

std::pair<CSRMatrix, NDArray> CSRSum(
436
    const std::vector<CSRMatrix>& A, const std::vector<NDArray>& A_weights) {
437
  CHECK(A.size() > 0) << "The list of graphs must not be empty.";
438
439
440
  CHECK_EQ(A.size(), A_weights.size())
      << "The list of edge weights must have the same length as the list of "
         "graphs.";
441
442
443
444
445
  const auto ctx = A[0].indptr->ctx;
  const auto idtype = A[0].indptr->dtype;
  const auto dtype = A_weights[0]->dtype;
  const auto num_rows = A[0].num_rows;
  const auto num_cols = A[0].num_cols;
446
  for (size_t i = 0; i < A.size(); ++i) {
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    CHECK_EQ(A[i].indptr->ctx, ctx)
        << "The devices of all graphs must be equal.";
    CHECK_EQ(A[i].indptr->dtype, idtype)
        << "The ID types of all graphs must be equal.";
    CHECK_EQ(A[i].indices->shape[0], A_weights[i]->shape[0])
        << "Shape of edge weights does not match the number of edges.";
    CHECK_EQ(A_weights[i]->ctx, ctx) << "The devices of edge weights must be "
                                        "the same as that of the graphs.";
    CHECK_EQ(A_weights[i]->dtype, dtype)
        << "The data types of all edge weights must be equal.";
    CHECK_EQ(A[i].num_rows, num_rows)
        << "Graphs must have the same number of nodes.";
    CHECK_EQ(A[i].num_cols, num_cols)
        << "Graphs must have the same number of nodes.";
461
462
463
  }

  std::pair<CSRMatrix, NDArray> ret;
464
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "CSRSum", {
465
466
467
468
469
470
471
472
473
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(dtype, DType, "Edge weights", {
        ret = CSRSum<XPU, IdType, DType>(A, A_weights);
      });
    });
  });
  return ret;
}

474
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      HeteroGraphRef graph = args[0];
      const std::string op = args[1];
      const std::string reduce_op = args[2];
      NDArray U = args[3];
      NDArray E = args[4];
      NDArray V = args[5];
      NDArray ArgU = args[6];
      NDArray ArgE = args[7];
      CheckCtx(
          graph->Context(), {U, E, V, ArgU, ArgE},
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
      CheckContiguous(
          {U, E, V, ArgU, ArgE}, {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
      CHECK_EQ(graph->NumEdgeTypes(), 1);
      auto pair =
          graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      CheckShape(
          {graph->NumVertices(src_vtype), graph->NumEdges(0),
           graph->NumVertices(dst_vtype)},
          {0, 1, 2, 2, 2}, {U, E, V, ArgU, ArgE},
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
      SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE});
    });
501

Israt Nisa's avatar
Israt Nisa committed
502
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGATHERMM")
503
504
505
506
507
508
509
510
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      NDArray A = args[0];
      NDArray B = args[1];
      NDArray C = args[2];
      NDArray idx_a = args[3];
      NDArray idx_b = args[4];
      GatherMM(A, B, C, idx_a, idx_b);
    });
Israt Nisa's avatar
Israt Nisa committed
511
512

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGATHERMMSCATTER")
513
514
515
516
517
518
519
520
521
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      NDArray A = args[0];
      NDArray B = args[1];
      NDArray C = args[2];
      NDArray idx_a = args[3];
      NDArray idx_b = args[4];
      NDArray idx_c = args[5];
      GatherMMScatter(A, B, C, idx_a, idx_b, idx_c);
    });
Israt Nisa's avatar
Israt Nisa committed
522
523

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSEGMENTMM")
524
525
526
527
528
529
530
531
532
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      NDArray A = args[0];
      NDArray B = args[1];
      NDArray C = args[2];
      NDArray seglen_A = args[3];
      bool A_trans = args[4];
      bool B_trans = args[5];
      SegmentMM(A, B, C, seglen_A, A_trans, B_trans);
    });
Israt Nisa's avatar
Israt Nisa committed
533

534
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSEGMENTMMBackwardB")
535
536
537
538
539
540
541
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      NDArray A = args[0];
      NDArray dC = args[1];
      NDArray dB = args[2];
      NDArray seglen = args[3];
      SegmentMMBackwardB(A, dC, dB, seglen);
    });
542

543
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_forward")
544
545
546
547
548
549
550
551
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      HeteroGraphRef graph = args[0];
      const std::string op = args[1];
      NDArray U = args[2];
      NDArray E = args[3];
      NDArray V = args[4];
      Edge_softmax_forward(op, graph.sptr(), U, E, V);
    });
552
553

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_backward")
554
555
556
557
558
559
560
561
562
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      HeteroGraphRef graph = args[0];
      const std::string op = args[1];
      NDArray out = args[2];
      NDArray sds = args[3];
      NDArray back_out = args[4];
      NDArray ufeat = args[5];
      Edge_softmax_backward(op, graph.sptr(), out, sds, back_out, ufeat);
    });
563

564
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMMHetero")
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      HeteroGraphRef graph = args[0];
      const std::string op = args[1];
      const std::string reduce_op = args[2];
      List<Value> list_U = args[3];
      List<Value> list_E = args[4];
      List<Value> list_V = args[5];
      List<Value> list_ArgU = args[6];
      List<Value> list_ArgE = args[7];
      List<Value> list_ArgU_ntype = args[8];
      List<Value> list_ArgE_etype = args[9];
      std::vector<std::vector<NDArray>> Arg_vec;  // ArgU + ArgE
      for (int i = 0; i < 4; ++i) {  // ArgU + ArgE + ArgU_ntype + ArgE_etype
        Arg_vec.push_back(std::vector<NDArray>());
      }
      std::vector<NDArray> U_vec = ListValueToVector<NDArray>(list_U);
      std::vector<NDArray> V_vec = ListValueToVector<NDArray>(list_V);
      std::vector<NDArray> E_vec = ListValueToVector<NDArray>(list_E);
      Arg_vec[0] = ListValueToVector<NDArray>(list_ArgU);
      Arg_vec[1] = ListValueToVector<NDArray>(list_ArgE);
      Arg_vec[2] = ListValueToVector<NDArray>(list_ArgU_ntype);
      Arg_vec[3] = ListValueToVector<NDArray>(list_ArgE_etype);
      for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
        auto pair = graph->meta_graph()->FindEdge(etype);
        const dgl_id_t src_id = pair.first;
        const dgl_id_t dst_id = pair.second;
        NDArray U = (U_vec.size() == 0) ? NullArray() : U_vec[src_id];
        NDArray E = (E_vec.size() == 0) ? NullArray() : E_vec[etype];
        CheckCtx(
            graph->Context(),
            {U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
            {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
        CheckContiguous(
            {U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
            {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
      }
      SpMMHetero(op, reduce_op, graph.sptr(), U_vec, E_vec, &V_vec, &Arg_vec);
    });
603

604
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      HeteroGraphRef graph = args[0];
      const std::string op = args[1];
      NDArray lhs = args[2];
      NDArray rhs = args[3];
      NDArray out = args[4];
      int lhs_target = args[5];
      int rhs_target = args[6];
      CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
      CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
      CHECK_EQ(graph->NumEdgeTypes(), 1);
      auto pair =
          graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;

      CheckShape(
          {graph->NumVertices(src_vtype), graph->NumEdges(0),
           graph->NumVertices(dst_vtype)},
          {lhs_target, rhs_target, 1}, {lhs, rhs, out},
          {"U_data", "E_data", "V_data"});
      SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target);
    });
628
629

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMMHetero")
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      HeteroGraphRef graph = args[0];
      const std::string op = args[1];
      List<Value> list_lhs = args[2];
      List<Value> list_rhs = args[3];
      List<Value> list_out = args[4];
      int lhs_target = args[5];
      int rhs_target = args[6];
      std::vector<NDArray> vec_lhs;
      std::vector<NDArray> vec_rhs;
      std::vector<NDArray> vec_out;

      vec_lhs.reserve(list_lhs.size());
      vec_rhs.reserve(list_rhs.size());
      vec_out.reserve(list_out.size());

      for (Value val : list_lhs) {
        vec_lhs.push_back(val->data);
      }
      for (Value val : list_rhs) {
        vec_rhs.push_back(val->data);
      }
      for (Value val : list_out) {
        vec_out.push_back(val->data);
      }
      SDDMMHetero(
          op, graph.sptr(), vec_lhs, vec_rhs, vec_out, lhs_target, rhs_target);
    });
658

659
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSegmentReduce")
660
661
662
663
664
665
666
667
668
669
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      const std::string op = args[0];
      NDArray feat = args[1];
      NDArray offsets = args[2];
      NDArray out = args[3];
      NDArray arg = args[4];
      CheckCtx(feat->ctx, {feat, offsets, out}, {"feat", "offsets", "out"});
      CheckContiguous({feat, offsets, out}, {"feat", "offsets", "out"});
      SegmentReduceDispatch(op, feat, offsets, out, arg);
    });
670

671
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelScatterAdd")
672
673
674
675
676
677
678
679
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      NDArray feat = args[0];
      NDArray idx = args[1];
      NDArray out = args[2];
      CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
      CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
      ScatterAddDispatch(feat, idx, out);
    });
680

681
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelUpdateGradMinMaxHetero")
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      HeteroGraphRef graph = args[0];
      const std::string op = args[1];
      List<Value> list_feat = args[2];
      List<Value> list_idx = args[3];
      List<Value> list_idx_etype = args[4];
      List<Value> list_out = args[5];
      std::vector<NDArray> vec_feat = ListValueToVector<NDArray>(list_feat);
      std::vector<NDArray> vec_idx = ListValueToVector<NDArray>(list_idx);
      std::vector<NDArray> vec_idx_etype =
          ListValueToVector<NDArray>(list_idx_etype);
      std::vector<NDArray> vec_out = ListValueToVector<NDArray>(list_out);
      // CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
      // CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
      UpdateGradMinMaxDispatchHetero(
          graph.sptr(), op, vec_feat, vec_idx, vec_idx_etype, &vec_out);
    });
699

700
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelBwdSegmentCmp")
701
702
703
704
705
706
707
708
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      NDArray feat = args[0];
      NDArray arg = args[1];
      NDArray out = args[2];
      CheckCtx(feat->ctx, {feat, arg, out}, {"feat", "arg", "out"});
      CheckContiguous({feat, arg, out}, {"feat", "arg", "out"});
      BackwardSegmentCmpDispatch(feat, arg, out);
    });
Zhi Lin's avatar
Zhi Lin committed
709

710
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGetEdgeMapping")
711
712
713
714
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      HeteroGraphRef graph = args[0];
      *rv = GetEdgeMapping(graph);
    });
715

716
/**
717
 * @brief Sparse matrix multiplication with graph interface.
718
 *
719
720
721
722
723
724
 * @param A_ref The left operand.
 * @param A_weights The edge weights of graph A.
 * @param B_ref The right operand.
 * @param B_weights The edge weights of graph B.
 * @param num_vtypes The number of vertex types of the graph to be returned.
 * @return A pair consisting of the new graph as well as its edge weights.
725
 */
726
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMM")
727
728
729
730
731
732
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      const HeteroGraphRef A_ref = args[0];
      NDArray A_weights = args[1];
      const HeteroGraphRef B_ref = args[2];
      NDArray B_weights = args[3];
      int num_vtypes = args[4];
733

734
      const HeteroGraphPtr A = A_ref.sptr();
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
      const HeteroGraphPtr B = B_ref.sptr();
      CHECK_EQ(A->NumEdgeTypes(), 1)
          << "The first graph must have only one edge type.";
      CHECK_EQ(B->NumEdgeTypes(), 1)
          << "The second graph must have only one edge type.";
      const auto A_csr = A->GetCSRMatrix(0);
      const auto B_csr = B->GetCSRMatrix(0);
      auto result = CSRMM(A_csr, A_weights, B_csr, B_weights);

      List<ObjectRef> ret;
      ret.push_back(
          HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
      ret.push_back(Value(MakeValue(result.second)));
      *rv = ret;
    });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRSum")
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      List<HeteroGraphRef> A_refs = args[0];
      List<Value> A_weights = args[1];

      std::vector<NDArray> weights = ListValueToVector<NDArray>(A_weights);
      std::vector<CSRMatrix> mats;
      mats.reserve(A_refs.size());
      int num_vtypes = 0;
      for (auto A_ref : A_refs) {
        const HeteroGraphPtr A = A_ref.sptr();
        CHECK_EQ(A->NumEdgeTypes(), 1)
            << "Graphs must have only one edge type.";
        mats.push_back(A->GetCSRMatrix(0));
        if (num_vtypes == 0) num_vtypes = A->NumVertexTypes();
      }
      auto result = CSRSum(mats, weights);

      List<ObjectRef> ret;
      ret.push_back(
          HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
      ret.push_back(Value(MakeValue(result.second)));
      *rv = ret;
    });
775
776

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMask")
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
    .set_body([](DGLArgs args, DGLRetValue* rv) {
      const HeteroGraphRef A_ref = args[0];
      NDArray A_weights = args[1];
      const HeteroGraphRef B_ref = args[2];

      const HeteroGraphPtr A = A_ref.sptr();
      const HeteroGraphPtr B = B_ref.sptr();
      CHECK_EQ(A->NumEdgeTypes(), 1)
          << "Both graphs must have only one edge type.";
      CHECK_EQ(B->NumEdgeTypes(), 1)
          << "Both graphs must have only one edge type.";
      const CSRMatrix& A_csr = A->GetCSRMatrix(0);
      const COOMatrix& B_coo = B->GetCOOMatrix(0);
      CHECK_EQ(A_csr.num_rows, B_coo.num_rows)
          << "Both graphs must have the same number of nodes.";
      CHECK_EQ(A_csr.num_cols, B_coo.num_cols)
          << "Both graphs must have the same number of nodes.";

      NDArray result;
      ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
        result =
            aten::CSRGetData<DType>(A_csr, B_coo.row, B_coo.col, A_weights, 0.);
      });
      *rv = result;
    });
802

803
804
}  // namespace aten
}  // namespace dgl