sampler.cc 74.1 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
5
6
/*!
 *  Copyright (c) 2018 by Contributors
 * \file graph/sampler.cc
 * \brief DGL sampler implementation
 */
#include <dgl/sampler.h>
7
#include <dgl/array.h>
Da Zheng's avatar
Da Zheng committed
8
#include <dgl/immutable_graph.h>
9
10
#include <dgl/runtime/container.h>
#include <dgl/packed_func_ext.h>
11
#include <dgl/random.h>
12
#include <dmlc/omp.h>
Da Zheng's avatar
Da Zheng committed
13
#include <algorithm>
14
15
#include <cstdlib>
#include <cmath>
16
#include <numeric>
17
#include "../c_api_common.h"
Da Zheng's avatar
Da Zheng committed
18

19
using namespace dgl::runtime;
20

Da Zheng's avatar
Da Zheng committed
21
22
23
24
25
26
namespace dgl {

namespace {
/*
 * ArrayHeap is used to sample elements from vector
 */
27
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
28
29
class ArrayHeap {
 public:
30
  explicit ArrayHeap(const std::vector<ValueType>& prob) {
Da Zheng's avatar
Da Zheng committed
31
32
    vec_size_ = prob.size();
    bit_len_ = ceil(log2(vec_size_));
33
    limit_ = 1UL << bit_len_;
Da Zheng's avatar
Da Zheng committed
34
35
36
    // allocate twice the size
    heap_.resize(limit_ << 1, 0);
    // allocate the leaves
37
    for (size_t i = limit_; i < vec_size_+limit_; ++i) {
Da Zheng's avatar
Da Zheng committed
38
39
40
41
      heap_[i] = prob[i-limit_];
    }
    // iterate up the tree (this is O(m))
    for (int i = bit_len_-1; i >= 0; --i) {
42
      for (size_t j = (1UL << i); j < (1UL << (i + 1)); ++j) {
Da Zheng's avatar
Da Zheng committed
43
44
45
46
47
48
49
50
51
52
53
        heap_[j] = heap_[j << 1] + heap_[(j << 1) + 1];
      }
    }
  }
  ~ArrayHeap() {}

  /*
   * Remove term from index (this costs O(log m) steps)
   */
  void Delete(size_t index) {
    size_t i = index + limit_;
54
55
56
57
58
59
60
    heap_[i] = 0;
    i /= 2;
    for (int j = bit_len_-1; j >= 0; --j) {
      // Using heap_[i] = heap_[i] - w will loss some precision in float.
      // Using addition to re-calculate the weight layer by layer.
      heap_[i] = heap_[i << 1] + heap_[(i << 1) + 1];
      i /= 2;
Da Zheng's avatar
Da Zheng committed
61
62
63
64
65
66
    }
  }

  /*
   * Add value w to index (this costs O(log m) steps)
   */
67
  void Add(size_t index, ValueType w) {
Da Zheng's avatar
Da Zheng committed
68
69
70
71
72
73
74
75
76
77
    size_t i = index + limit_;
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] += w;
      i = i >> 1;
    }
  }

  /*
   * Sample from arrayHeap
   */
78
  size_t Sample() {
79
    // heap_ is empty
80
    ValueType xi = heap_[1] * RandomEngine::ThreadLocal()->Uniform<float>();
81
    size_t i = 1;
Da Zheng's avatar
Da Zheng committed
82
83
84
85
86
87
88
89
90
91
92
93
94
    while (i < limit_) {
      i = i << 1;
      if (xi >= heap_[i]) {
        xi -= heap_[i];
        i += 1;
      }
    }
    return i - limit_;
  }

  /*
   * Sample a vector by given the size n
   */
95
  size_t SampleWithoutReplacement(size_t n, std::vector<size_t>* samples) {
Da Zheng's avatar
Da Zheng committed
96
    // sample n elements
97
98
99
100
101
102
    size_t i = 0;
    for (; i < n; ++i) {
      // heap is empty
      if (heap_[1] == 0) {
        break;
      }
103
      samples->at(i) = this->Sample();
Da Zheng's avatar
Da Zheng committed
104
105
      this->Delete(samples->at(i));
    }
106
107

    return i;
Da Zheng's avatar
Da Zheng committed
108
109
110
  }

 private:
111
  size_t vec_size_;  // sample size
Da Zheng's avatar
Da Zheng committed
112
  int bit_len_;   // bit size
113
  size_t limit_;
114
  std::vector<ValueType> heap_;
Da Zheng's avatar
Da Zheng committed
115
116
};

117
118
119
120
121
122
123
///////////////////////// Samplers //////////////////////////
class EdgeSamplerObject: public Object {
 public:
  EdgeSamplerObject(const GraphPtr gptr,
                    IdArray seed_edges,
                    const int64_t batch_size,
                    const int64_t num_workers,
124
125
                    const bool replacement,
                    const bool reset,
126
127
                    const std::string neg_mode,
                    const int64_t neg_sample_size,
128
                    const int64_t chunk_size,
129
130
131
132
133
134
135
136
137
                    const bool exclude_positive,
                    const bool check_false_neg,
                    IdArray relations) {
    gptr_ = gptr;
    seed_edges_ = seed_edges;
    relations_ = relations;

    batch_size_ = batch_size;
    num_workers_ = num_workers;
138
139
    replacement_ = replacement;
    reset_ = reset;
140
141
142
143
    neg_mode_ = neg_mode;
    neg_sample_size_ = neg_sample_size;
    exclude_positive_ = exclude_positive;
    check_false_neg_ = check_false_neg;
144
    chunk_size_ = chunk_size;
145
146
147
148
149
  }

  ~EdgeSamplerObject() {}

  virtual void Fetch(DGLRetValue* rv) = 0;
150
  virtual void Reset() = 0;
151
152
153
154
155
156
157
158
159
160
161

 protected:
  virtual void randomSample(size_t set_size, size_t num, std::vector<size_t>* out) = 0;
  virtual void randomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                    std::vector<size_t>* out) = 0;

  NegSubgraph genNegEdgeSubgraph(const Subgraph &pos_subg,
                                 const std::string &neg_mode,
                                 int64_t neg_sample_size,
                                 bool exclude_positive,
                                 bool check_false_neg);
162
163
164
165
166
  NegSubgraph genChunkedNegEdgeSubgraph(const Subgraph &pos_subg,
                                        const std::string &neg_mode,
                                        int64_t neg_sample_size,
                                        bool exclude_positive,
                                        bool check_false_neg);
167
168
169
170
171
172
173

  GraphPtr gptr_;
  IdArray seed_edges_;
  IdArray relations_;

  int64_t batch_size_;
  int64_t num_workers_;
174
175
  bool replacement_;
  int64_t reset_;
176
177
178
179
  std::string neg_mode_;
  int64_t neg_sample_size_;
  bool exclude_positive_;
  bool check_false_neg_;
180
  int64_t chunk_size_;
181
182
};

Da Zheng's avatar
Da Zheng committed
183
184
185
/*
 * Uniformly sample integers from [0, set_size) without replacement.
 */
186
void RandomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
Da Zheng's avatar
Da Zheng committed
187
188
189
190
191
192
193
194
195
196
197
198
  if (num < set_size) {
    std::unordered_set<size_t> sampled_idxs;
    while (sampled_idxs.size() < num) {
      sampled_idxs.insert(RandomEngine::ThreadLocal()->RandInt(set_size));
    }
    out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++)
      out->push_back(i);
  }
Da Zheng's avatar
Da Zheng committed
199
200
}

201
202
203
204
205
206
void RandomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                  std::vector<size_t>* out) {
  std::unordered_map<size_t, int> sampled_idxs;
  for (auto v : exclude) {
    sampled_idxs.insert(std::pair<size_t, int>(v, 0));
  }
Da Zheng's avatar
Da Zheng committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
  if (num + exclude.size() < set_size) {
    while (sampled_idxs.size() < num + exclude.size()) {
      size_t rand = RandomEngine::ThreadLocal()->RandInt(set_size);
      sampled_idxs.insert(std::pair<size_t, int>(rand, 1));
    }
    for (auto it = sampled_idxs.begin(); it != sampled_idxs.end(); it++) {
      if (it->second) {
        out->push_back(it->first);
      }
    }
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++) {
      // If the element doesn't exist in exclude.
      if (sampled_idxs.find(i) == sampled_idxs.end()) {
        out->push_back(i);
      }
225
226
227
228
    }
  }
}

Da Zheng's avatar
Da Zheng committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
 * For a sparse array whose non-zeros are represented by nz_idxs,
 * negate the sparse array and outputs the non-zeros in the negated array.
 */
void NegateArray(const std::vector<size_t> &nz_idxs,
                 size_t arr_size,
                 std::vector<size_t>* out) {
  // nz_idxs must have been sorted.
  auto it = nz_idxs.begin();
  size_t i = 0;
  CHECK_GT(arr_size, nz_idxs.back());
  for (; i < arr_size && it != nz_idxs.end(); i++) {
    if (*it == i) {
      it++;
      continue;
    }
    out->push_back(i);
  }
  for (; i < arr_size; i++) {
    out->push_back(i);
  }
}

/*
 * Uniform sample vertices from a list of vertices.
 */
void GetUniformSample(const dgl_id_t* edge_id_list,
                      const dgl_id_t* vid_list,
                      const size_t ver_len,
                      const size_t max_num_neighbor,
                      std::vector<dgl_id_t>* out_ver,
260
                      std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
261
262
263
264
265
266
267
268
269
270
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // If we just sample a small number of elements from a large neighbor list.
  std::vector<size_t> sorted_idxs;
  if (ver_len > max_num_neighbor * 2) {
    sorted_idxs.reserve(max_num_neighbor);
271
    RandomSample(ver_len, max_num_neighbor, &sorted_idxs);
Da Zheng's avatar
Da Zheng committed
272
273
274
275
    std::sort(sorted_idxs.begin(), sorted_idxs.end());
  } else {
    std::vector<size_t> negate;
    negate.reserve(ver_len - max_num_neighbor);
276
    RandomSample(ver_len, ver_len - max_num_neighbor, &negate);
Da Zheng's avatar
Da Zheng committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    std::sort(negate.begin(), negate.end());
    NegateArray(negate, ver_len, &sorted_idxs);
  }
  // verify the result.
  CHECK_EQ(sorted_idxs.size(), max_num_neighbor);
  for (size_t i = 1; i < sorted_idxs.size(); i++) {
    CHECK_GT(sorted_idxs[i], sorted_idxs[i - 1]);
  }
  for (auto idx : sorted_idxs) {
    out_ver->push_back(vid_list[idx]);
    out_edge->push_back(edge_id_list[idx]);
  }
}

/*
 * Non-uniform sample via ArrayHeap
293
294
 *
 * \param probability Transition probability on the entire graph, indexed by edge ID
Da Zheng's avatar
Da Zheng committed
295
 */
296
297
template<typename ValueType>
void GetNonUniformSample(const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
298
299
300
301
302
                         const dgl_id_t* edge_id_list,
                         const dgl_id_t* vid_list,
                         const size_t ver_len,
                         const size_t max_num_neighbor,
                         std::vector<dgl_id_t>* out_ver,
303
                         std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
304
305
306
307
308
309
310
311
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // Make sample
  std::vector<size_t> sp_index(max_num_neighbor);
312
  std::vector<ValueType> sp_prob(ver_len);
Da Zheng's avatar
Da Zheng committed
313
  for (size_t i = 0; i < ver_len; ++i) {
314
    sp_prob[i] = probability[edge_id_list[i]];
Da Zheng's avatar
Da Zheng committed
315
  }
316
  ArrayHeap<ValueType> arrayHeap(sp_prob);
317
  arrayHeap.SampleWithoutReplacement(max_num_neighbor, &sp_index);
Da Zheng's avatar
Da Zheng committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
  out_ver->resize(max_num_neighbor);
  out_edge->resize(max_num_neighbor);
  for (size_t i = 0; i < max_num_neighbor; ++i) {
    size_t idx = sp_index[i];
    out_ver->at(i) = vid_list[idx];
    out_edge->at(i) = edge_id_list[idx];
  }
  sort(out_ver->begin(), out_ver->end());
  sort(out_edge->begin(), out_edge->end());
}

/*
 * Used for subgraph sampling
 */
struct neigh_list {
  std::vector<dgl_id_t> neighs;
  std::vector<dgl_id_t> edges;
  neigh_list(const std::vector<dgl_id_t> &_neighs,
             const std::vector<dgl_id_t> &_edges)
    : neighs(_neighs), edges(_edges) {}
};

struct neighbor_info {
  dgl_id_t id;
  size_t pos;
  size_t num_edges;

  neighbor_info(dgl_id_t id, size_t pos, size_t num_edges) {
    this->id = id;
    this->pos = pos;
    this->num_edges = num_edges;
  }
};

NodeFlow ConstructNodeFlow(std::vector<dgl_id_t> neighbor_list,
                           std::vector<dgl_id_t> edge_list,
                           std::vector<size_t> layer_offsets,
                           std::vector<std::pair<dgl_id_t, int> > *sub_vers,
                           std::vector<neighbor_info> *neigh_pos,
                           const std::string &edge_type,
358
                           int64_t num_edges, int num_hops) {
359
  NodeFlow nf = NodeFlow::Create();
Da Zheng's avatar
Da Zheng committed
360
  uint64_t num_vertices = sub_vers->size();
361
362
363
364
  nf->node_mapping = aten::NewIdArray(num_vertices);
  nf->edge_mapping = aten::NewIdArray(num_edges);
  nf->layer_offsets = aten::NewIdArray(num_hops + 1);
  nf->flow_offsets = aten::NewIdArray(num_hops);
Da Zheng's avatar
Da Zheng committed
365

366
367
368
369
  dgl_id_t *node_map_data = static_cast<dgl_id_t *>(nf->node_mapping->data);
  dgl_id_t *layer_off_data = static_cast<dgl_id_t *>(nf->layer_offsets->data);
  dgl_id_t *flow_off_data = static_cast<dgl_id_t *>(nf->flow_offsets->data);
  dgl_id_t *edge_map_data = static_cast<dgl_id_t *>(nf->edge_mapping->data);
Da Zheng's avatar
Da Zheng committed
370

371
372
  // Construct sub_csr_graph, we treat nodeflow as multigraph by default
  auto subg_csr = CSRPtr(new CSR(num_vertices, num_edges));
373
374
375
  dgl_id_t* indptr_out = static_cast<dgl_id_t*>(subg_csr->indptr()->data);
  dgl_id_t* col_list_out = static_cast<dgl_id_t*>(subg_csr->indices()->data);
  dgl_id_t* eid_out = static_cast<dgl_id_t*>(subg_csr->edge_ids()->data);
Da Zheng's avatar
Da Zheng committed
376
377
378
379
380
381
382
383
384
385
386
387
  size_t collected_nedges = 0;

  // The data from the previous steps:
  // * node data: sub_vers (vid, layer), neigh_pos,
  // * edge data: neighbor_list, edge_list, probability.
  // * layer_offsets: the offset in sub_vers.
  dgl_id_t ver_id = 0;
  std::vector<std::unordered_map<dgl_id_t, dgl_id_t>> layer_ver_maps;
  layer_ver_maps.resize(num_hops);
  size_t out_node_idx = 0;
  for (int layer_id = num_hops - 1; layer_id >= 0; layer_id--) {
    // We sort the vertices in a layer so that we don't need to sort the neighbor Ids
388
389
390
391
392
393
394
395
396
397
398
    // after remap to a subgraph. However, we don't need to sort the first layer
    // because we want the order of the nodes in the first layer is the same as
    // the input seed nodes.
    if (layer_id > 0) {
      std::sort(sub_vers->begin() + layer_offsets[layer_id],
                sub_vers->begin() + layer_offsets[layer_id + 1],
                [](const std::pair<dgl_id_t, dgl_id_t> &a1,
                   const std::pair<dgl_id_t, dgl_id_t> &a2) {
        return a1.first < a2.first;
      });
    }
Da Zheng's avatar
Da Zheng committed
399
400
401
402
403
404

    // Save the sampled vertices and its layer Id.
    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      node_map_data[out_node_idx++] = sub_vers->at(i).first;
      layer_ver_maps[layer_id].insert(std::pair<dgl_id_t, dgl_id_t>(sub_vers->at(i).first,
                                                                    ver_id++));
405
      CHECK_EQ(sub_vers->at(i).second, layer_id);
Da Zheng's avatar
Da Zheng committed
406
407
408
409
410
411
412
413
414
    }
  }
  CHECK(out_node_idx == num_vertices);

  // sampling algorithms have to start from the seed nodes, so the seed nodes are
  // in the first layer and the input nodes are in the last layer.
  // When we expose the sampled graph to a Python user, we say the input nodes
  // are in the first layer and the seed nodes are in the last layer.
  // Thus, when we copy sampled results to a CSR, we need to reverse the order of layers.
415
416
  std::fill(indptr_out, indptr_out + num_vertices + 1, 0);
  size_t row_idx = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
Da Zheng's avatar
Da Zheng committed
417
418
  layer_off_data[0] = 0;
  layer_off_data[1] = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
419
  int out_layer_idx = 1;
Da Zheng's avatar
Da Zheng committed
420
  for (int layer_id = num_hops - 2; layer_id >= 0; layer_id--) {
421
422
423
424
425
426
427
428
429
    // Because we don't sort the vertices in the first layer above, we can't sort
    // the neighbor positions of the vertices in the first layer either.
    if (layer_id > 0) {
      std::sort(neigh_pos->begin() + layer_offsets[layer_id],
                neigh_pos->begin() + layer_offsets[layer_id + 1],
                [](const neighbor_info &a1, const neighbor_info &a2) {
                  return a1.id < a2.id;
                });
    }
Da Zheng's avatar
Da Zheng committed
430
431
432

    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      dgl_id_t dst_id = sub_vers->at(i).first;
433
      CHECK_EQ(dst_id, neigh_pos->at(i).id);
Da Zheng's avatar
Da Zheng committed
434
      size_t pos = neigh_pos->at(i).pos;
435
      CHECK_LE(pos, neighbor_list.size());
436
437
      const size_t nedges = neigh_pos->at(i).num_edges;
      if (neighbor_list.empty()) CHECK_EQ(nedges, 0);
Da Zheng's avatar
Da Zheng committed
438
439
440

      // We need to map the Ids of the neighbors to the subgraph.
      auto neigh_it = neighbor_list.begin() + pos;
441
      for (size_t i = 0; i < nedges; i++) {
Da Zheng's avatar
Da Zheng committed
442
        dgl_id_t neigh = *(neigh_it + i);
443
        CHECK(layer_ver_maps[layer_id + 1].find(neigh) != layer_ver_maps[layer_id + 1].end());
Da Zheng's avatar
Da Zheng committed
444
445
446
447
        col_list_out[collected_nedges + i] = layer_ver_maps[layer_id + 1][neigh];
      }
      // We can simply copy the edge Ids.
      std::copy_n(edge_list.begin() + pos,
448
449
450
                  nedges, edge_map_data + collected_nedges);
      collected_nedges += nedges;
      indptr_out[row_idx+1] = indptr_out[row_idx] + nedges;
Da Zheng's avatar
Da Zheng committed
451
452
453
454
455
456
      row_idx++;
    }
    layer_off_data[out_layer_idx + 1] = layer_off_data[out_layer_idx]
        + layer_offsets[layer_id + 1] - layer_offsets[layer_id];
    out_layer_idx++;
  }
457
458
459
460
  CHECK_EQ(row_idx, num_vertices);
  CHECK_EQ(indptr_out[row_idx], num_edges);
  CHECK_EQ(out_layer_idx, num_hops);
  CHECK_EQ(layer_off_data[out_layer_idx], num_vertices);
Da Zheng's avatar
Da Zheng committed
461
462
463

  // Copy flow offsets.
  flow_off_data[0] = 0;
464
465
  int out_flow_idx = 0;
  for (size_t i = 0; i < layer_offsets.size() - 2; i++) {
466
    size_t num_edges = indptr_out[layer_off_data[i + 2]] - indptr_out[layer_off_data[i + 1]];
Da Zheng's avatar
Da Zheng committed
467
468
469
470
    flow_off_data[out_flow_idx + 1] = flow_off_data[out_flow_idx] + num_edges;
    out_flow_idx++;
  }
  CHECK(out_flow_idx == num_hops - 1);
471
  CHECK(flow_off_data[num_hops - 1] == static_cast<uint64_t>(num_edges));
Da Zheng's avatar
Da Zheng committed
472

473
  std::iota(eid_out, eid_out + num_edges, 0);
Da Zheng's avatar
Da Zheng committed
474

475
  if (edge_type == std::string("in")) {
476
    nf->graph = GraphPtr(new ImmutableGraph(subg_csr, nullptr));
Da Zheng's avatar
Da Zheng committed
477
  } else {
478
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, subg_csr));
Da Zheng's avatar
Da Zheng committed
479
480
481
482
483
  }

  return nf;
}

484
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
485
NodeFlow SampleSubgraph(const ImmutableGraph *graph,
486
                        const std::vector<dgl_id_t>& seeds,
487
                        const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
488
489
                        const std::string &edge_type,
                        int num_hops,
490
491
                        size_t num_neighbor,
                        const bool add_self_loop) {
492
  CHECK_EQ(graph->NumBits(), 64) << "32 bit graph is not supported yet";
493
  const size_t num_seeds = seeds.size();
Da Zheng's avatar
Da Zheng committed
494
  auto orig_csr = edge_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
495
496
497
  const dgl_id_t* val_list = static_cast<dgl_id_t*>(orig_csr->edge_ids()->data);
  const dgl_id_t* col_list = static_cast<dgl_id_t*>(orig_csr->indices()->data);
  const dgl_id_t* indptr = static_cast<dgl_id_t*>(orig_csr->indptr()->data);
Da Zheng's avatar
Da Zheng committed
498
499
500
501
502
503

  std::unordered_set<dgl_id_t> sub_ver_map;  // The vertex Ids in a layer.
  std::vector<std::pair<dgl_id_t, int> > sub_vers;
  sub_vers.reserve(num_seeds * 10);
  // add seed vertices
  for (size_t i = 0; i < num_seeds; ++i) {
504
    auto ret = sub_ver_map.insert(seeds[i]);
Da Zheng's avatar
Da Zheng committed
505
506
    // If the vertex is inserted successfully.
    if (ret.second) {
507
      sub_vers.emplace_back(seeds[i], 0);
Da Zheng's avatar
Da Zheng committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    }
  }
  std::vector<dgl_id_t> tmp_sampled_src_list;
  std::vector<dgl_id_t> tmp_sampled_edge_list;
  // ver_id, position
  std::vector<neighbor_info> neigh_pos;
  neigh_pos.reserve(num_seeds);
  std::vector<dgl_id_t> neighbor_list;
  std::vector<dgl_id_t> edge_list;
  std::vector<size_t> layer_offsets(num_hops + 1);
  int64_t num_edges = 0;

  layer_offsets[0] = 0;
  layer_offsets[1] = sub_vers.size();
522
  for (int layer_id = 1; layer_id < num_hops; layer_id++) {
Da Zheng's avatar
Da Zheng committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    // We need to avoid resampling the same node in a layer, but we allow a node
    // to be resampled in multiple layers. We use `sub_ver_map` to keep track of
    // sampled nodes in a layer, and clear it when entering a new layer.
    sub_ver_map.clear();
    // Previous iteration collects all nodes in sub_vers, which are collected
    // in the previous layer. sub_vers is used both as a node collection and a queue.
    for (size_t idx = layer_offsets[layer_id - 1]; idx < layer_offsets[layer_id]; idx++) {
      dgl_id_t dst_id = sub_vers[idx].first;
      const int cur_node_level = sub_vers[idx].second;

      tmp_sampled_src_list.clear();
      tmp_sampled_edge_list.clear();
      dgl_id_t ver_len = *(indptr+dst_id+1) - *(indptr+dst_id);
      if (probability == nullptr) {  // uniform-sample
        GetUniformSample(val_list + *(indptr + dst_id),
                         col_list + *(indptr + dst_id),
                         ver_len,
                         num_neighbor,
                         &tmp_sampled_src_list,
542
                         &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
543
544
545
546
547
548
549
      } else {  // non-uniform-sample
        GetNonUniformSample(probability,
                            val_list + *(indptr + dst_id),
                            col_list + *(indptr + dst_id),
                            ver_len,
                            num_neighbor,
                            &tmp_sampled_src_list,
550
                            &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
551
      }
Da Zheng's avatar
Da Zheng committed
552
553
554
      // If we need to add self loop and it doesn't exist in the sampled neighbor list.
      if (add_self_loop && std::find(tmp_sampled_src_list.begin(), tmp_sampled_src_list.end(),
                                     dst_id) == tmp_sampled_src_list.end()) {
555
        tmp_sampled_src_list.push_back(dst_id);
Da Zheng's avatar
Da Zheng committed
556
557
558
559
560
561
562
563
564
565
        const dgl_id_t *src_list = col_list + *(indptr + dst_id);
        const dgl_id_t *eid_list = val_list + *(indptr + dst_id);
        // TODO(zhengda) this operation has O(N) complexity. It can be pretty slow.
        const dgl_id_t *src = std::find(src_list, src_list + ver_len, dst_id);
        // If there doesn't exist a self loop in the graph.
        // we have to add -1 as the edge id for the self-loop edge.
        if (src == src_list + ver_len)
          tmp_sampled_edge_list.push_back(-1);
        else
          tmp_sampled_edge_list.push_back(eid_list[src - src_list]);
566
      }
Da Zheng's avatar
Da Zheng committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
      CHECK_EQ(tmp_sampled_src_list.size(), tmp_sampled_edge_list.size());
      neigh_pos.emplace_back(dst_id, neighbor_list.size(), tmp_sampled_src_list.size());
      // Then push the vertices
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        neighbor_list.push_back(tmp_sampled_src_list[i]);
      }
      // Finally we push the edge list
      for (size_t i = 0; i < tmp_sampled_edge_list.size(); ++i) {
        edge_list.push_back(tmp_sampled_edge_list[i]);
      }
      num_edges += tmp_sampled_src_list.size();
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        // We need to add the neighbor in the hashtable here. This ensures that
        // the vertex in the queue is unique. If we see a vertex before, we don't
        // need to add it to the queue again.
        auto ret = sub_ver_map.insert(tmp_sampled_src_list[i]);
        // If the sampled neighbor is inserted to the map successfully.
        if (ret.second) {
          sub_vers.emplace_back(tmp_sampled_src_list[i], cur_node_level + 1);
        }
      }
    }
    layer_offsets[layer_id + 1] = layer_offsets[layer_id] + sub_ver_map.size();
    CHECK_EQ(layer_offsets[layer_id + 1], sub_vers.size());
  }

  return ConstructNodeFlow(neighbor_list, edge_list, layer_offsets, &sub_vers, &neigh_pos,
594
                           edge_type, num_edges, num_hops);
Da Zheng's avatar
Da Zheng committed
595
596
}

597
}  // namespace
Da Zheng's avatar
Da Zheng committed
598

599
600
DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetGraph")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
601
602
    NodeFlow nflow = args[0];
    *rv = nflow->graph;
603
604
605
606
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetNodeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
607
    NodeFlow nflow = args[0];
608
609
610
611
612
    *rv = nflow->node_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetEdgeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
613
    NodeFlow nflow = args[0];
614
615
616
617
618
    *rv = nflow->edge_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetLayerOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
619
    NodeFlow nflow = args[0];
620
621
622
623
624
    *rv = nflow->layer_offsets;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetBlockOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
625
    NodeFlow nflow = args[0];
626
627
628
    *rv = nflow->flow_offsets;
  });

629
630
631
632
633
634
635
template<typename ValueType>
NodeFlow SamplerOp::NeighborSample(const ImmutableGraph *graph,
                                   const std::vector<dgl_id_t>& seeds,
                                   const std::string &edge_type,
                                   int num_hops, int expand_factor,
                                   const bool add_self_loop,
                                   const ValueType *probability) {
Da Zheng's avatar
Da Zheng committed
636
  return SampleSubgraph(graph,
637
638
                        seeds,
                        probability,
Da Zheng's avatar
Da Zheng committed
639
640
                        edge_type,
                        num_hops + 1,
641
642
                        expand_factor,
                        add_self_loop);
Da Zheng's avatar
Da Zheng committed
643
644
}

645
namespace {
646
  void ConstructLayers(const dgl_id_t *indptr,
647
                       const dgl_id_t *indices,
648
649
                       const std::vector<dgl_id_t>& seed_array,
                       IdArray layer_sizes,
650
651
652
653
654
655
656
657
658
                       std::vector<dgl_id_t> *layer_offsets,
                       std::vector<dgl_id_t> *node_mapping,
                       std::vector<int64_t> *actl_layer_sizes,
                       std::vector<float> *probabilities) {
    /*
     * Given a graph and a collection of seed nodes, this function constructs NodeFlow
     * layers via uniform layer-wise sampling, and return the resultant layers and their
     * corresponding probabilities.
     */
659
    std::copy(seed_array.begin(), seed_array.end(), std::back_inserter(*node_mapping));
660
661
    actl_layer_sizes->push_back(node_mapping->size());
    probabilities->insert(probabilities->end(), node_mapping->size(), 1);
662
663
    const int64_t* layer_sizes_data = static_cast<int64_t*>(layer_sizes->data);
    const int64_t num_layers = layer_sizes->shape[0];
664
665
666

    size_t curr = 0;
    size_t next = node_mapping->size();
667
668
    for (int64_t i = num_layers - 1; i >= 0; --i) {
      const int64_t layer_size = layer_sizes_data[i];
669
670
671
672
673
674
675
676
677
678
679
680
      std::unordered_set<dgl_id_t> candidate_set;
      for (auto j = curr; j != next; ++j) {
        auto src = (*node_mapping)[j];
        candidate_set.insert(indices + indptr[src], indices + indptr[src + 1]);
      }

      std::vector<dgl_id_t> candidate_vector;
      std::copy(candidate_set.begin(), candidate_set.end(),
                std::back_inserter(candidate_vector));

      std::unordered_map<dgl_id_t, size_t> n_occurrences;
      auto n_candidates = candidate_vector.size();
681
      for (int64_t j = 0; j != layer_size; ++j) {
682
683
        auto dst = candidate_vector[
          RandomEngine::ThreadLocal()->RandInt(n_candidates)];
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        if (!n_occurrences.insert(std::make_pair(dst, 1)).second) {
          ++n_occurrences[dst];
        }
      }

      for (auto const &pair : n_occurrences) {
        node_mapping->push_back(pair.first);
        float p = pair.second * n_candidates / static_cast<float>(layer_size);
        probabilities->push_back(p);
      }

      actl_layer_sizes->push_back(node_mapping->size() - next);
      curr = next;
      next = node_mapping->size();
    }
    std::reverse(node_mapping->begin(), node_mapping->end());
    std::reverse(actl_layer_sizes->begin(), actl_layer_sizes->end());
    layer_offsets->push_back(0);
    for (const auto &size : *actl_layer_sizes) {
      layer_offsets->push_back(size + layer_offsets->back());
    }
  }

707
  void ConstructFlows(const dgl_id_t *indptr,
708
709
710
711
                      const dgl_id_t *indices,
                      const dgl_id_t *eids,
                      const std::vector<dgl_id_t> &node_mapping,
                      const std::vector<int64_t> &actl_layer_sizes,
712
713
714
                      std::vector<dgl_id_t> *sub_indptr,
                      std::vector<dgl_id_t> *sub_indices,
                      std::vector<dgl_id_t> *sub_eids,
715
716
717
718
719
720
721
                      std::vector<dgl_id_t> *flow_offsets,
                      std::vector<dgl_id_t> *edge_mapping) {
    /*
     * Given a graph and a sequence of NodeFlow layers, this function constructs dense
     * subgraphs (flows) between consecutive layers.
     */
    auto n_flows = actl_layer_sizes.size() - 1;
722
723
    for (int64_t i = 0; i < actl_layer_sizes.front() + 1; i++)
      sub_indptr->push_back(0);
724
725
726
727
728
729
730
731
732
733
734
735
736
    flow_offsets->push_back(0);
    int64_t first = 0;
    for (size_t i = 0; i < n_flows; ++i) {
      auto src_size = actl_layer_sizes[i];
      std::unordered_map<dgl_id_t, dgl_id_t> source_map;
      for (int64_t j = 0; j < src_size; ++j) {
        source_map.insert(std::make_pair(node_mapping[first + j], first + j));
      }
      auto dst_size = actl_layer_sizes[i + 1];
      for (int64_t j = 0; j < dst_size; ++j) {
        auto dst = node_mapping[first + src_size + j];
        typedef std::pair<dgl_id_t, dgl_id_t> id_pair;
        std::vector<id_pair> neighbor_indices;
737
        for (dgl_id_t k = indptr[dst]; k < indptr[dst + 1]; ++k) {
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
          // TODO(gaiyu): accelerate hash table lookup
          auto ret = source_map.find(indices[k]);
          if (ret != source_map.end()) {
            neighbor_indices.push_back(std::make_pair(ret->second, eids[k]));
          }
        }
        auto cmp = [](const id_pair p, const id_pair q)->bool { return p.first < q.first; };
        std::sort(neighbor_indices.begin(), neighbor_indices.end(), cmp);
        for (const auto &pair : neighbor_indices) {
          sub_indices->push_back(pair.first);
          edge_mapping->push_back(pair.second);
        }
        sub_indptr->push_back(sub_indices->size());
      }
      flow_offsets->push_back(sub_indices->size());
      first += src_size;
    }
    sub_eids->resize(sub_indices->size());
    std::iota(sub_eids->begin(), sub_eids->end(), 0);
  }
}  // namespace

NodeFlow SamplerOp::LayerUniformSample(const ImmutableGraph *graph,
761
                                       const std::vector<dgl_id_t>& seeds,
762
                                       const std::string &neighbor_type,
763
                                       IdArray layer_sizes) {
764
  const auto g_csr = neighbor_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
765
766
767
  const dgl_id_t *indptr = static_cast<dgl_id_t*>(g_csr->indptr()->data);
  const dgl_id_t *indices = static_cast<dgl_id_t*>(g_csr->indices()->data);
  const dgl_id_t *eids = static_cast<dgl_id_t*>(g_csr->edge_ids()->data);
768
769
770
771
772
773
774

  std::vector<dgl_id_t> layer_offsets;
  std::vector<dgl_id_t> node_mapping;
  std::vector<int64_t> actl_layer_sizes;
  std::vector<float> probabilities;
  ConstructLayers(indptr,
                  indices,
775
                  seeds,
776
777
778
779
780
781
                  layer_sizes,
                  &layer_offsets,
                  &node_mapping,
                  &actl_layer_sizes,
                  &probabilities);

782
  std::vector<dgl_id_t> sub_indptr, sub_indices, sub_edge_ids;
783
784
785
786
787
788
789
  std::vector<dgl_id_t> flow_offsets;
  std::vector<dgl_id_t> edge_mapping;
  ConstructFlows(indptr,
                 indices,
                 eids,
                 node_mapping,
                 actl_layer_sizes,
790
791
792
                 &sub_indptr,
                 &sub_indices,
                 &sub_edge_ids,
793
794
                 &flow_offsets,
                 &edge_mapping);
795
796
797
798
799
  // sanity check
  CHECK_GT(sub_indptr.size(), 0);
  CHECK_EQ(sub_indptr[0], 0);
  CHECK_EQ(sub_indptr.back(), sub_indices.size());
  CHECK_EQ(sub_indices.size(), sub_edge_ids.size());
800

801
  NodeFlow nf = NodeFlow::Create();
802
803
804
  auto sub_csr = CSRPtr(new CSR(aten::VecToIdArray(sub_indptr),
                                aten::VecToIdArray(sub_indices),
                                aten::VecToIdArray(sub_edge_ids)));
805
806

  if (neighbor_type == std::string("in")) {
807
    nf->graph = GraphPtr(new ImmutableGraph(sub_csr, nullptr));
808
  } else {
809
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, sub_csr));
810
811
  }

812
813
814
815
  nf->node_mapping = aten::VecToIdArray(node_mapping);
  nf->edge_mapping = aten::VecToIdArray(edge_mapping);
  nf->layer_offsets = aten::VecToIdArray(layer_offsets);
  nf->flow_offsets = aten::VecToIdArray(flow_offsets);
816
817
818
819

  return nf;
}

Da Zheng's avatar
Da Zheng committed
820
821
822
823
824
825
826
827
828
829
830
831
void BuildCsr(const ImmutableGraph &g, const std::string neigh_type) {
  if (neigh_type == "in") {
    auto csr = g.GetInCSR();
    assert(csr);
  } else if (neigh_type == "out") {
    auto csr = g.GetOutCSR();
    assert(csr);
  } else {
    LOG(FATAL) << "We don't support sample from neighbor type " << neigh_type;
  }
}

832
833
834
835
836
837
838
839
840
841
842
template<typename ValueType>
std::vector<NodeFlow> NeighborSamplingImpl(const ImmutableGraphPtr gptr,
                                           const IdArray seed_nodes,
                                           const int64_t batch_start_id,
                                           const int64_t batch_size,
                                           const int64_t max_num_workers,
                                           const int64_t expand_factor,
                                           const int64_t num_hops,
                                           const std::string neigh_type,
                                           const bool add_self_loop,
                                           const ValueType *probability) {
843
    // process args
844
    CHECK(aten::IsValidIdArray(seed_nodes));
845
846
847
848
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
849
850
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
851
    // generate node flows
852
    std::vector<NodeFlow> nflows(num_workers);
853
854
855
856
857
858
859
860
861
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
862
863
864
      nflows[i] = SamplerOp::NeighborSample(
          gptr.get(), worker_seeds, neigh_type, num_hops, expand_factor,
          add_self_loop, probability);
865
    }
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    return nflows;
}

DGL_REGISTER_GLOBAL("sampling._CAPI_UniformSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

885
886
887
888
    CHECK(aten::IsValidIdArray(seed_nodes));
    CHECK_EQ(seed_nodes->ctx.device_type, kDLCPU)
      << "UniformSampler only support CPU sampling";

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    std::vector<NodeFlow> nflows = NeighborSamplingImpl<float>(
        gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
        expand_factor, num_hops, neigh_type, add_self_loop, nullptr);

    *rv = List<NodeFlow>(nflows);
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_NeighborSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];
    const NDArray probability = args[9];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

913
914
915
916
    CHECK(aten::IsValidIdArray(seed_nodes));
    CHECK_EQ(seed_nodes->ctx.device_type, kDLCPU)
      << "NeighborSampler only support CPU sampling";

917
918
919
920
921
922
    std::vector<NodeFlow> nflows;

    CHECK(probability->dtype.code == kDLFloat)
      << "transition probability must be float";
    CHECK(probability->ndim == 1)
      << "transition probability must be a 1-dimensional vector";
923
924
    CHECK_EQ(probability->ctx.device_type, kDLCPU)
      << "NeighborSampling only support CPU sampling";
925
926
927
928
929
930
931
932

    ATEN_FLOAT_TYPE_SWITCH(
      probability->dtype,
      FloatType,
      "transition probability",
      {
        const FloatType *prob;

933
        if (aten::IsNullArray(probability)) {
934
935
936
937
938
939
940
941
942
943
944
945
946
947
          prob = nullptr;
        } else {
          CHECK(probability->shape[0] == gptr->NumEdges())
            << "transition probability must have same number of elements as edges";
          CHECK(probability.IsContiguous())
            << "transition probability must be contiguous tensor";
          prob = static_cast<const FloatType *>(probability->data);
        }

        nflows = NeighborSamplingImpl(
            gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
            expand_factor, num_hops, neigh_type, add_self_loop, prob);
    });

948
    *rv = List<NodeFlow>(nflows);
949
950
951
952
953
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_LayerSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
954
    GraphRef g = args[0];
955
    const IdArray seed_nodes = args[1];
956
957
958
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
959
    const IdArray layer_sizes = args[5];
960
961
    const std::string neigh_type = args[6];
    // process args
962
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
963
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
964
    CHECK(aten::IsValidIdArray(seed_nodes));
965
966
967
968
969
970
971
    CHECK_EQ(seed_nodes->ctx.device_type, kDLCPU)
      << "LayerSampler only support CPU sampling";

    CHECK(aten::IsValidIdArray(layer_sizes));
    CHECK_EQ(layer_sizes->ctx.device_type, kDLCPU)
      << "LayerSampler only support CPU sampling";

972
973
974
975
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
976
977
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
978
    // generate node flows
979
    std::vector<NodeFlow> nflows(num_workers);
980
981
982
983
984
985
986
987
988
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
989
990
      nflows[i] = SamplerOp::LayerUniformSample(
          gptr.get(), worker_seeds, neigh_type, layer_sizes);
991
    }
992
    *rv = List<NodeFlow>(nflows);
993
994
  });

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
namespace {

void BuildCoo(const ImmutableGraph &g) {
  auto coo = g.GetCOO();
  assert(coo);
}


dgl_id_t global2local_map(dgl_id_t global_id,
                          std::unordered_map<dgl_id_t, dgl_id_t> *map) {
  auto it = map->find(global_id);
  if (it == map->end()) {
    dgl_id_t local_id = map->size();
    map->insert(std::pair<dgl_id_t, dgl_id_t>(global_id, local_id));
    return local_id;
  } else {
    return it->second;
  }
}

Da Zheng's avatar
Da Zheng committed
1015
inline bool IsNegativeHeadMode(const std::string &mode) {
1016
1017
1018
  return mode == "head";
}

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
IdArray GetGlobalVid(IdArray induced_nid, IdArray subg_nid) {
  IdArray gnid = IdArray::Empty({subg_nid->shape[0]}, subg_nid->dtype, subg_nid->ctx);
  const dgl_id_t *induced_nid_data = static_cast<dgl_id_t *>(induced_nid->data);
  const dgl_id_t *subg_nid_data = static_cast<dgl_id_t *>(subg_nid->data);
  dgl_id_t *gnid_data = static_cast<dgl_id_t *>(gnid->data);
  for (int64_t i = 0; i < subg_nid->shape[0]; i++) {
    gnid_data[i] = induced_nid_data[subg_nid_data[i]];
  }
  return gnid;
}

IdArray CheckExistence(GraphPtr gptr, IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid) {
  return gptr->HasEdgesBetween(GetGlobalVid(induced_nid, neg_src),
                               GetGlobalVid(induced_nid, neg_dst));
}

IdArray CheckExistence(GraphPtr gptr, IdArray relations,
                       IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid, IdArray neg_eid) {
  neg_src = GetGlobalVid(induced_nid, neg_src);
  neg_dst = GetGlobalVid(induced_nid, neg_dst);
  BoolArray exist = gptr->HasEdgesBetween(neg_src, neg_dst);
  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *relation_data = static_cast<dgl_id_t *>(relations->data);
  // TODO(zhengda) is this right?
  dgl_id_t *exist_data = static_cast<dgl_id_t *>(exist->data);
  int64_t num_neg_edges = neg_src->shape[0];
  for (int64_t i = 0; i < num_neg_edges; i++) {
    // If the edge doesn't exist, we don't need to do anything.
    if (!exist_data[i])
      continue;
    // If the edge exists, we need to double check if the relations match.
    // If they match, this negative edge isn't really a negative edge.
    dgl_id_t eid1 = neg_eid_data[i];
    dgl_id_t orig_neg_rel1 = relation_data[eid1];
    IdArray eids = gptr->EdgeId(neg_src_data[i], neg_dst_data[i]);
    dgl_id_t *eid_data = static_cast<dgl_id_t *>(eids->data);
    int64_t num_edges_between = eids->shape[0];
    bool same_rel = false;
    for (int64_t j = 0; j < num_edges_between; j++) {
      dgl_id_t neg_rel1 = relation_data[eid_data[j]];
      if (neg_rel1 == orig_neg_rel1) {
        same_rel = true;
        break;
      }
    }
    exist_data[i] = same_rel;
  }
  return exist;
}

Da Zheng's avatar
Da Zheng committed
1073
std::vector<dgl_id_t> Global2Local(const std::vector<size_t> &ids,
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
                                   const std::unordered_map<dgl_id_t, dgl_id_t> &map) {
  std::vector<dgl_id_t> local_ids(ids.size());
  for (size_t i = 0; i < ids.size(); i++) {
    auto it = map.find(ids[i]);
    assert(it != map.end());
    local_ids[i] = it->second;
  }
  return local_ids;
}

1084
1085
1086
1087
1088
1089
NegSubgraph EdgeSamplerObject::genNegEdgeSubgraph(const Subgraph &pos_subg,
                                                  const std::string &neg_mode,
                                                  int64_t neg_sample_size,
                                                  bool exclude_positive,
                                                  bool check_false_neg) {
  int64_t num_tot_nodes = gptr_->NumVertices();
Da Zheng's avatar
Da Zheng committed
1090
1091
  if (neg_sample_size > num_tot_nodes)
    neg_sample_size = num_tot_nodes;
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;
  int64_t num_neg_edges = num_pos_edges * neg_sample_size;
  IdArray neg_dst = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
1103
1104
1105
1106
  const dgl_id_t *induced_vid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
1107
1108
1109
1110
1111
1112
1113
  size_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<size_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

Da Zheng's avatar
Da Zheng committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;
  if (IsNegativeHeadMode(neg_mode)) {
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

1127
1128
1129
1130
  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
  std::vector<dgl_id_t> local_pos_vids;
  local_pos_vids.reserve(num_pos_edges);

1131
1132
  std::vector<size_t> neg_vids;
  neg_vids.reserve(neg_sample_size);
Da Zheng's avatar
Da Zheng committed
1133
1134
1135
1136
1137
1138
1139
1140
  // If we don't exclude positive edges, we are actually sampling more than
  // the total number of nodes in the graph.
  if (!exclude_positive && neg_sample_size >= num_tot_nodes) {
    // We add all nodes as negative nodes.
    for (int64_t i = 0; i < num_tot_nodes; i++) {
      neg_vids.push_back(i);
      neg_map[i] = i;
    }
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161

    // Get all nodes in the positive side.
    for (int64_t i = 0; i < num_pos_edges; i++) {
      dgl_id_t vid = induced_vid_data[unchanged[i]];
      local_pos_vids.push_back(neg_map[vid]);
    }
    // There is no guarantee that the nodes in the vector are unique.
    std::sort(local_pos_vids.begin(), local_pos_vids.end());
    auto it = std::unique(local_pos_vids.begin(), local_pos_vids.end());
    local_pos_vids.resize(it - local_pos_vids.begin());
  } else {
    // Collect nodes in the positive side.
    dgl_id_t local_vid = 0;
    for (int64_t i = 0; i < num_pos_edges; i++) {
      dgl_id_t vid = induced_vid_data[unchanged[i]];
      auto it = neg_map.find(vid);
      if (it == neg_map.end()) {
        local_pos_vids.push_back(local_vid);
        neg_map.insert(std::pair<dgl_id_t, dgl_id_t>(vid, local_vid++));
      }
    }
Da Zheng's avatar
Da Zheng committed
1162
1163
  }

1164
  int64_t prev_neg_offset = 0;
1165
1166
1167
1168
1169
  for (int64_t i = 0; i < num_pos_edges; i++) {
    size_t neg_idx = i * neg_sample_size;

    std::vector<size_t> neighbors;
    DGLIdIters neigh_it;
Da Zheng's avatar
Da Zheng committed
1170
    if (IsNegativeHeadMode(neg_mode)) {
1171
      neigh_it = gptr_->PredVec(induced_vid_data[unchanged[i]]);
1172
    } else {
1173
      neigh_it = gptr_->SuccVec(induced_vid_data[unchanged[i]]);
1174
1175
    }

Da Zheng's avatar
Da Zheng committed
1176
1177
1178
    // If the number of negative nodes is smaller than the number of total nodes
    // in the graph.
    if (exclude_positive && neg_sample_size < num_tot_nodes) {
1179
1180
      std::vector<size_t> exclude;
      for (auto it = neigh_it.begin(); it != neigh_it.end(); it++) {
1181
1182
        dgl_id_t global_vid = *it;
        exclude.push_back(global_vid);
1183
      }
1184
      prev_neg_offset = neg_vids.size();
1185
      randomSample(num_tot_nodes, neg_sample_size, exclude, &neg_vids);
1186
      assert(prev_neg_offset + neg_sample_size == neg_vids.size());
Da Zheng's avatar
Da Zheng committed
1187
    } else if (neg_sample_size < num_tot_nodes) {
1188
      prev_neg_offset = neg_vids.size();
1189
      randomSample(num_tot_nodes, neg_sample_size, &neg_vids);
1190
      assert(prev_neg_offset + neg_sample_size == neg_vids.size());
Da Zheng's avatar
Da Zheng committed
1191
    } else if (exclude_positive) {
1192
1193
      LOG(FATAL) << "We can't exclude positive edges"
                    "when sampling negative edges with all nodes.";
Da Zheng's avatar
Da Zheng committed
1194
1195
1196
1197
1198
    } else {
      // We don't need to do anything here.
      // In this case, every edge has the same negative edges. That is,
      // neg_vids contains all nodes of the graph. They have been generated
      // before the for loop.
1199
1200
1201
1202
1203
1204
1205
    }

    dgl_id_t global_unchanged = induced_vid_data[unchanged[i]];
    dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);

    for (int64_t j = 0; j < neg_sample_size; j++) {
      neg_unchanged[neg_idx + j] = local_unchanged;
1206
      dgl_id_t local_changed = global2local_map(neg_vids[j + prev_neg_offset], &neg_map);
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
      neg_changed[neg_idx + j] = local_changed;
      // induced negative eid references to the positive one.
      induced_neg_eid_data[neg_idx + j] = induced_eid_data[i];
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1221
  NegSubgraph neg_subg;
1222
1223
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
1224
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst));
1225
1226
1227
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
1228

1229
1230
1231
1232
1233
1234
1235
  if (IsNegativeHeadMode(neg_mode)) {
    neg_subg.head_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
    neg_subg.tail_nid = aten::VecToIdArray(local_pos_vids);
  } else {
    neg_subg.head_nid = aten::VecToIdArray(local_pos_vids);
    neg_subg.tail_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
  }
1236
  // TODO(zhengda) we should provide an array of 1s if exclude_positive
Da Zheng's avatar
Da Zheng committed
1237
  if (check_false_neg) {
1238
    if (aten::IsNullArray(relations_)) {
1239
      neg_subg.exist = CheckExistence(gptr_, neg_src, neg_dst, induced_neg_vid);
Da Zheng's avatar
Da Zheng committed
1240
    } else {
1241
      neg_subg.exist = CheckExistence(gptr_, relations_, neg_src, neg_dst,
Da Zheng's avatar
Da Zheng committed
1242
1243
                                      induced_neg_vid, induced_neg_eid);
    }
1244
  }
1245
1246
1247
  return neg_subg;
}

1248
1249
1250
1251
1252
NegSubgraph EdgeSamplerObject::genChunkedNegEdgeSubgraph(const Subgraph &pos_subg,
                                                         const std::string &neg_mode,
                                                         int64_t neg_sample_size,
                                                         bool exclude_positive,
                                                         bool check_false_neg) {
1253
  int64_t num_tot_nodes = gptr_->NumVertices();
1254
1255
1256
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;
Da Zheng's avatar
Da Zheng committed
1257
1258
  if (neg_sample_size > num_tot_nodes)
    neg_sample_size = num_tot_nodes;
1259

1260
1261
  int64_t chunk_size = chunk_size_;
  CHECK_GT(chunk_size, 0) << "chunk size has to be positive";
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
  // If num_pos_edges isn't divisible by chunk_size, the actual number of chunks
  // is num_chunks + 1 and the last chunk size is last_chunk_size.
  // Otherwise, the actual number of chunks is num_chunks, the last chunk size
  // is 0.
  int64_t num_chunks = num_pos_edges / chunk_size;
  int64_t last_chunk_size = num_pos_edges - num_chunks * chunk_size;

  // The number of negative edges.
  int64_t num_neg_edges = neg_sample_size * chunk_size * num_chunks;
  int64_t num_neg_edges_last_chunk = neg_sample_size * last_chunk_size;
  int64_t num_all_neg_edges = num_neg_edges + num_neg_edges_last_chunk;

  // We should include the last chunk.
  if (last_chunk_size > 0)
    num_chunks++;

  IdArray neg_dst = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
1285
1286
1287
1288
1289
1290
  const dgl_id_t *induced_vid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
  int64_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<dgl_id_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);
1291
1292
1293
1294
1295
1296
1297
1298

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;
Da Zheng's avatar
Da Zheng committed
1299
  if (IsNegativeHeadMode(neg_mode)) {
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

  // We first sample all negative edges.
Da Zheng's avatar
Da Zheng committed
1310
1311
  std::vector<size_t> global_neg_vids;
  std::vector<size_t> local_neg_vids;
1312
  randomSample(num_tot_nodes,
1313
               num_chunks * neg_sample_size,
Da Zheng's avatar
Da Zheng committed
1314
               &global_neg_vids);
1315
  CHECK_EQ(num_chunks * neg_sample_size, global_neg_vids.size());
1316
1317

  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
1318
  dgl_id_t local_vid = 0;
1319

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
  // Collect nodes in the positive side.
  std::vector<dgl_id_t> local_pos_vids;
  local_pos_vids.reserve(num_pos_edges);
  for (int64_t i = 0; i < num_pos_edges; i++) {
    dgl_id_t vid = induced_vid_data[unchanged[i]];
    auto it = neg_map.find(vid);
    if (it == neg_map.end()) {
      local_pos_vids.push_back(local_vid);
      neg_map.insert(std::pair<dgl_id_t, dgl_id_t>(vid, local_vid++));
    }
  }

Da Zheng's avatar
Da Zheng committed
1332
1333
1334
1335
1336
1337
1338
  // We should map the global negative nodes to local Ids in advance
  // to reduce computation overhead.
  local_neg_vids.resize(global_neg_vids.size());
  for (size_t i = 0; i < global_neg_vids.size(); i++) {
    local_neg_vids[i] = global2local_map(global_neg_vids[i], &neg_map);;
  }

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
  for (int64_t i_chunk = 0; i_chunk < num_chunks; i_chunk++) {
    // for each chunk.
    int64_t neg_idx = neg_sample_size * chunk_size * i_chunk;
    int64_t pos_edge_idx = chunk_size * i_chunk;
    int64_t neg_node_idx = neg_sample_size * i_chunk;
    // The actual chunk size. It'll be different for the last chunk.
    int64_t chunk_size1;
    if (i_chunk == num_chunks - 1 && last_chunk_size > 0)
      chunk_size1 = last_chunk_size;
    else
      chunk_size1 = chunk_size;

    for (int64_t in_chunk = 0; in_chunk != chunk_size1; ++in_chunk) {
      // For each positive node in a chunk.
      dgl_id_t global_unchanged = induced_vid_data[unchanged[pos_edge_idx + in_chunk]];
      dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);
      for (int64_t j = 0; j < neg_sample_size; ++j) {
        neg_unchanged[neg_idx] = local_unchanged;
Da Zheng's avatar
Da Zheng committed
1357
        neg_changed[neg_idx] = local_neg_vids[neg_node_idx + j];
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
        induced_neg_eid_data[neg_idx] = induced_eid_data[pos_edge_idx + in_chunk];
        neg_idx++;
      }
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1372
  NegSubgraph neg_subg;
1373
1374
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
1375
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst));
1376
1377
1378
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
1379
  if (IsNegativeHeadMode(neg_mode)) {
Da Zheng's avatar
Da Zheng committed
1380
    neg_subg.head_nid = aten::VecToIdArray(Global2Local(global_neg_vids, neg_map));
1381
1382
1383
    neg_subg.tail_nid = aten::VecToIdArray(local_pos_vids);
  } else {
    neg_subg.head_nid = aten::VecToIdArray(local_pos_vids);
Da Zheng's avatar
Da Zheng committed
1384
    neg_subg.tail_nid = aten::VecToIdArray(Global2Local(global_neg_vids, neg_map));
1385
  }
Da Zheng's avatar
Da Zheng committed
1386
  if (check_false_neg) {
1387
    if (aten::IsNullArray(relations_)) {
1388
      neg_subg.exist = CheckExistence(gptr_, neg_src, neg_dst, induced_neg_vid);
Da Zheng's avatar
Da Zheng committed
1389
    } else {
1390
      neg_subg.exist = CheckExistence(gptr_, relations_, neg_src, neg_dst,
Da Zheng's avatar
Da Zheng committed
1391
1392
                                      induced_neg_vid, induced_neg_eid);
    }
1393
  }
1394
1395
1396
  return neg_subg;
}

1397
1398
1399
1400
inline SubgraphRef ConvertRef(const Subgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new Subgraph(subg)));
}

1401
1402
1403
1404
inline SubgraphRef ConvertRef(const NegSubgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new NegSubgraph(subg)));
}

1405
1406
}  // namespace

1407
DGL_REGISTER_GLOBAL("sampling._CAPI_GetNegEdgeExistence")
1408
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1409
1410
1411
1412
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->exist;
});
1413

1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
DGL_REGISTER_GLOBAL("sampling._CAPI_GetEdgeSubgraphHead")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->head_nid;
});

DGL_REGISTER_GLOBAL("sampling._CAPI_GetEdgeSubgraphTail")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->tail_nid;
});

class UniformEdgeSamplerObject: public EdgeSamplerObject {
public:
  explicit UniformEdgeSamplerObject(const GraphPtr gptr,
                                    IdArray seed_edges,
                                    const int64_t batch_size,
                                    const int64_t num_workers,
1434
1435
                                    const bool replacement,
                                    const bool reset,
1436
1437
                                    const std::string neg_mode,
                                    const int64_t neg_sample_size,
1438
                                    const int64_t chunk_size,
1439
1440
1441
1442
1443
1444
1445
                                    const bool exclude_positive,
                                    const bool check_false_neg,
                                    IdArray relations)
                                    : EdgeSamplerObject(gptr,
                                        seed_edges,
                                        batch_size,
                                        num_workers,
1446
1447
                                        replacement,
                                        reset,
1448
1449
                                        neg_mode,
                                        neg_sample_size,
1450
                                        chunk_size,
1451
1452
1453
1454
1455
1456
                                        exclude_positive,
                                        check_false_neg,
                                        relations) {
    batch_curr_id_ = 0;
    num_seeds_ = seed_edges->shape[0];
    max_batch_id_ = (num_seeds_ + batch_size - 1) / batch_size;
1457

1458
1459
1460
1461
1462
1463
1464
    // TODO(song): Tricky thing here to make sure gptr_ has coo cache
    gptr_->FindEdge(0);
  }
  ~UniformEdgeSamplerObject() {}

  void Fetch(DGLRetValue* rv) {
    const int64_t num_workers = std::min(num_workers_, max_batch_id_ - batch_curr_id_);
1465
1466
1467
    // generate subgraphs.
    std::vector<SubgraphRef> positive_subgs(num_workers);
    std::vector<SubgraphRef> negative_subgs(num_workers);
1468

1469
#pragma omp parallel for
1470
1471
1472
    for (int64_t i = 0; i < num_workers; i++) {
      const int64_t start = (batch_curr_id_ + i) * batch_size_;
      const int64_t end = std::min(start + batch_size_, num_seeds_);
1473
      const int64_t num_edges = end - start;
1474
1475
1476
1477
1478
1479
1480
      IdArray worker_seeds;

      if (replacement_ == false) {
        worker_seeds = seed_edges_.CreateView({num_edges}, DLDataType{kDLInt, 64, 1},
                                              sizeof(dgl_id_t) * start);
      } else {
        std::vector<dgl_id_t> seeds;
1481
        const dgl_id_t *seed_edge_ids = static_cast<const dgl_id_t *>(seed_edges_->data);
1482
1483
        // sampling of each edge is a standalone event
        for (int64_t i = 0; i < num_edges; ++i) {
1484
1485
1486
          int64_t seed = static_cast<const int64_t>(
              RandomEngine::ThreadLocal()->RandInt(num_seeds_));
          seeds.push_back(seed_edge_ids[seed]);
1487
1488
        }

1489
        worker_seeds = aten::VecToIdArray(seeds, seed_edges_->dtype.bits);
1490
1491
      }

1492
      EdgeArray arr = gptr_->FindEdges(worker_seeds);
1493
1494
1495
1496
1497
1498
      const dgl_id_t *src_ids = static_cast<const dgl_id_t *>(arr.src->data);
      const dgl_id_t *dst_ids = static_cast<const dgl_id_t *>(arr.dst->data);
      std::vector<dgl_id_t> src_vec(src_ids, src_ids + num_edges);
      std::vector<dgl_id_t> dst_vec(dst_ids, dst_ids + num_edges);
      // TODO(zhengda) what if there are duplicates in the src and dst vectors.

1499
      Subgraph subg = gptr_->EdgeSubgraph(worker_seeds, false);
1500
      positive_subgs[i] = ConvertRef(subg);
1501
1502
1503
1504
1505
1506
1507
      // For chunked negative sampling, we accept "chunk-head" for corrupting head
      // nodes and "chunk-tail" for corrupting tail nodes.
      if (neg_mode_.substr(0, 5) == "chunk") {
        NegSubgraph neg_subg = genChunkedNegEdgeSubgraph(subg, neg_mode_.substr(6),
                                                         neg_sample_size_,
                                                         exclude_positive_,
                                                         check_false_neg_);
1508
        negative_subgs[i] = ConvertRef(neg_subg);
1509
      } else if (neg_mode_ == "head" || neg_mode_ == "tail") {
1510
1511
1512
1513
        NegSubgraph neg_subg = genNegEdgeSubgraph(subg, neg_mode_,
                                                  neg_sample_size_,
                                                  exclude_positive_,
                                                  check_false_neg_);
1514
1515
1516
        negative_subgs[i] = ConvertRef(neg_subg);
      }
    }
1517
    if (neg_mode_.size() > 0) {
1518
1519
      positive_subgs.insert(positive_subgs.end(), negative_subgs.begin(), negative_subgs.end());
    }
1520
1521
    batch_curr_id_ += num_workers;

1522
1523
1524
1525
    if (batch_curr_id_ >= max_batch_id_ && reset_ == true) {
      Reset();
    }

1526
    *rv = List<SubgraphRef>(positive_subgs);
1527
  }
1528

1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
  void Reset() {
    batch_curr_id_ = 0;
    if (replacement_ == false) {
      // Now we should shuffle the data and reset the sampler.
      dgl_id_t *seed_ids = static_cast<dgl_id_t *>(seed_edges_->data);
      std::shuffle(seed_ids, seed_ids + seed_edges_->shape[0],
                   std::default_random_engine());
    }
  }

1539
  DGL_DECLARE_OBJECT_TYPE_INFO(UniformEdgeSamplerObject, Object);
1540

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
private:
  void randomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
    RandomSample(set_size, num, out);
  }

  void randomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                    std::vector<size_t>* out) {
    RandomSample(set_size, num, exclude, out);
  }

  int64_t batch_curr_id_;
  int64_t max_batch_id_;
  int64_t num_seeds_;
};

class UniformEdgeSampler: public ObjectRef {
 public:
  UniformEdgeSampler() {}
  explicit UniformEdgeSampler(std::shared_ptr<runtime::Object> obj): ObjectRef(obj) {}

  UniformEdgeSamplerObject* operator->() const {
    return static_cast<UniformEdgeSamplerObject*>(obj_.get());
  }

  std::shared_ptr<UniformEdgeSamplerObject> sptr() const {
    return CHECK_NOTNULL(std::dynamic_pointer_cast<UniformEdgeSamplerObject>(obj_));
  }

  operator bool() const { return this->defined(); }
  using ContainerType = UniformEdgeSamplerObject;
};

DGL_REGISTER_GLOBAL("sampling._CAPI_CreateUniformEdgeSampler")
1574
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1575
1576
1577
1578
1579
    // arguments
    GraphRef g = args[0];
    IdArray seed_edges = args[1];
    const int64_t batch_size = args[2];
    const int64_t max_num_workers = args[3];
1580
1581
1582
1583
1584
1585
1586
    const bool replacement = args[4];
    const bool reset = args[5];
    const std::string neg_mode = args[6];
    const int neg_sample_size = args[7];
    const bool exclude_positive = args[8];
    const bool check_false_neg = args[9];
    IdArray relations = args[10];
1587
    const int64_t chunk_size = args[11];
1588
1589
1590
1591
    // process args
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
    CHECK(aten::IsValidIdArray(seed_edges));
1592
1593
1594
1595
1596
1597
1598
1599
    CHECK_EQ(seed_edges->ctx.device_type, kDLCPU)
      << "UniformEdgeSampler only support CPU sampling";

    if (relations->shape[0] > 0) {
      CHECK(aten::IsValidIdArray(relations));
      CHECK_EQ(relations->ctx.device_type, kDLCPU)
        << "WeightedEdgeSampler only support CPU sampling";
    }
1600
1601
1602
1603
1604
1605
    BuildCoo(*gptr);

    auto o = std::make_shared<UniformEdgeSamplerObject>(gptr,
                                                        seed_edges,
                                                        batch_size,
                                                        max_num_workers,
1606
1607
                                                        replacement,
                                                        reset,
1608
1609
                                                        neg_mode,
                                                        neg_sample_size,
1610
                                                        chunk_size,
1611
1612
1613
1614
                                                        exclude_positive,
                                                        check_false_neg,
                                                        relations);
    *rv = o;
1615
1616
});

1617
DGL_REGISTER_GLOBAL("sampling._CAPI_FetchUniformEdgeSample")
1618
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1619
1620
  UniformEdgeSampler sampler = args[0];
  sampler->Fetch(rv);
1621
1622
});

1623
1624
1625
1626
1627
1628
DGL_REGISTER_GLOBAL("sampling._CAPI_ResetUniformEdgeSample")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  UniformEdgeSampler sampler = args[0];
  sampler->Reset();
});

1629
1630
template<typename ValueType>
class WeightedEdgeSamplerObject: public EdgeSamplerObject {
1631
 public:
1632
1633
1634
1635
1636
1637
  explicit WeightedEdgeSamplerObject(const GraphPtr gptr,
                                     IdArray seed_edges,
                                     NDArray edge_weight,
                                     NDArray node_weight,
                                     const int64_t batch_size,
                                     const int64_t num_workers,
1638
1639
                                     const bool replacement,
                                     const bool reset,
1640
1641
                                     const std::string neg_mode,
                                     const int64_t neg_sample_size,
1642
                                     const int64_t chunk_size,
1643
1644
1645
1646
1647
1648
1649
                                     const bool exclude_positive,
                                     const bool check_false_neg,
                                     IdArray relations)
                                     : EdgeSamplerObject(gptr,
                                        seed_edges,
                                        batch_size,
                                        num_workers,
1650
1651
                                        replacement,
                                        reset,
1652
1653
                                        neg_mode,
                                        neg_sample_size,
1654
                                        chunk_size,
1655
1656
1657
                                        exclude_positive,
                                        check_false_neg,
                                        relations) {
1658
    const int64_t num_edges = edge_weight->shape[0];
1659
1660
    const ValueType *edge_prob = static_cast<const ValueType*>(edge_weight->data);
    std::vector<ValueType> eprob(num_edges);
1661
    for (int64_t i = 0; i < num_edges; ++i) {
1662
1663
1664
      eprob[i] = edge_prob[i];
    }
    edge_selector_ = std::make_shared<ArrayHeap<ValueType>>(eprob);
1665
    edge_weight_ = edge_weight;
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678

    const size_t num_nodes = node_weight->shape[0];
    if (num_nodes == 0) {
      node_selector_ = nullptr;
    } else {
      const ValueType *node_prob = static_cast<const ValueType*>(node_weight->data);
      std::vector<ValueType> nprob(num_nodes);
      for (size_t i = 0; i < num_nodes; ++i) {
        nprob[i] = node_prob[i];
      }
      node_selector_ = std::make_shared<ArrayHeap<ValueType>>(nprob);
    }

1679
1680
1681
    curr_batch_id_ = 0;
    // handle int64 overflow here
    max_batch_id_ = (num_edges + batch_size - 1) / batch_size;
1682
1683
1684
1685
1686
1687
1688
1689
    // TODO(song): Tricky thing here to make sure gptr_ has coo cache
    gptr_->FindEdge(0);
  }

  ~WeightedEdgeSamplerObject() {
  }

  void Fetch(DGLRetValue* rv) {
1690
    const int64_t num_workers = std::min(num_workers_, max_batch_id_ - curr_batch_id_);
1691
    // generate subgraphs.
1692
1693
1694
    std::vector<SubgraphRef> positive_subgs(num_workers);
    std::vector<SubgraphRef> negative_subgs(num_workers);

1695
#pragma omp parallel for
1696
    for (int i = 0; i < num_workers; i++) {
1697
      const dgl_id_t *seed_edge_ids = static_cast<const dgl_id_t *>(seed_edges_->data);
1698
1699
1700
1701
1702
1703
      std::vector<size_t> edge_ids(batch_size_);

      if (replacement_ == false) {
        size_t n = batch_size_;
        size_t num_ids = 0;
#pragma omp critical
1704
1705
1706
1707
1708
1709
        {
          num_ids = edge_selector_->SampleWithoutReplacement(n, &edge_ids);
        }
        edge_ids.resize(num_ids);
        for (size_t i = 0; i < num_ids; ++i) {
          edge_ids[i] = seed_edge_ids[edge_ids[i]];
1710
1711
1712
1713
1714
1715
1716
        }
      } else {
        // sampling of each edge is a standalone event
        for (int i = 0; i < batch_size_; ++i) {
          size_t edge_id = edge_selector_->Sample();
          edge_ids[i] = seed_edge_ids[edge_id];
        }
1717
      }
1718

1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
      auto worker_seeds = aten::VecToIdArray(edge_ids, seed_edges_->dtype.bits);

      EdgeArray arr = gptr_->FindEdges(worker_seeds);
      const dgl_id_t *src_ids = static_cast<const dgl_id_t *>(arr.src->data);
      const dgl_id_t *dst_ids = static_cast<const dgl_id_t *>(arr.dst->data);
      std::vector<dgl_id_t> src_vec(src_ids, src_ids + batch_size_);
      std::vector<dgl_id_t> dst_vec(dst_ids, dst_ids + batch_size_);
      // TODO(zhengda) what if there are duplicates in the src and dst vectors.
      Subgraph subg = gptr_->EdgeSubgraph(worker_seeds, false);
      positive_subgs[i] = ConvertRef(subg);
1729
1730
1731
1732
1733
1734
1735
      // For chunked negative sampling, we accept "chunk-head" for corrupting head
      // nodes and "chunk-tail" for corrupting tail nodes.
      if (neg_mode_.substr(0, 5) == "chunk") {
        NegSubgraph neg_subg = genChunkedNegEdgeSubgraph(subg, neg_mode_.substr(6),
                                                         neg_sample_size_,
                                                         exclude_positive_,
                                                         check_false_neg_);
1736
        negative_subgs[i] = ConvertRef(neg_subg);
1737
      } else if (neg_mode_ == "head" || neg_mode_ == "tail") {
1738
1739
1740
1741
1742
1743
1744
        NegSubgraph neg_subg = genNegEdgeSubgraph(subg, neg_mode_,
                                                  neg_sample_size_,
                                                  exclude_positive_,
                                                  check_false_neg_);
        negative_subgs[i] = ConvertRef(neg_subg);
      }
    }
1745
1746
1747
1748
1749
    curr_batch_id_ += num_workers;

    if (curr_batch_id_ >= max_batch_id_ && reset_ == true) {
      Reset();
    }
1750
1751
1752
1753
1754
1755
1756

    if (neg_mode_.size() > 0) {
      positive_subgs.insert(positive_subgs.end(), negative_subgs.begin(), negative_subgs.end());
    }
    *rv = List<SubgraphRef>(positive_subgs);
  }

1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
  void Reset() {
    curr_batch_id_ = 0;
    if (replacement_ == false) {
      const int64_t num_edges = edge_weight_->shape[0];
      const ValueType *edge_prob = static_cast<const ValueType*>(edge_weight_->data);
      std::vector<ValueType> eprob(num_edges);
      for (int64_t i = 0; i < num_edges; ++i) {
        eprob[i] = edge_prob[i];
      }

      // rebuild the edge_selector_
      edge_selector_ = std::make_shared<ArrayHeap<ValueType>>(eprob);
    }
  }

1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
  DGL_DECLARE_OBJECT_TYPE_INFO(WeightedEdgeSamplerObject<ValueType>, Object);

private:
  void randomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
    if (num < set_size) {
      std::unordered_set<size_t> sampled_idxs;
      while (sampled_idxs.size() < num) {
        if (node_selector_ == nullptr) {
          sampled_idxs.insert(RandomEngine::ThreadLocal()->RandInt(set_size));
        } else {
          size_t id = node_selector_->Sample();
          sampled_idxs.insert(id);
        }
      }

      out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
    } else {
      // If we need to sample all elements in the set, we don't need to
      // generate random numbers.
      for (size_t i = 0; i < set_size; i++)
        out->push_back(i);
    }
  }

  void randomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                    std::vector<size_t>* out) {
    std::unordered_map<size_t, int> sampled_idxs;
    for (auto v : exclude) {
      sampled_idxs.insert(std::pair<size_t, int>(v, 0));
    }
    if (num + exclude.size() < set_size) {
      while (sampled_idxs.size() < num + exclude.size()) {
        size_t rand;
        if (node_selector_ == nullptr) {
          rand =  RandomEngine::ThreadLocal()->RandInt(set_size);
        } else {
          rand = node_selector_->Sample();
        }
        sampled_idxs.insert(std::pair<size_t, int>(rand, 1));
      }
      for (auto it = sampled_idxs.begin(); it != sampled_idxs.end(); it++) {
        if (it->second) {
          out->push_back(it->first);
        }
      }
    } else {
      // If we need to sample all elements in the set, we don't need to
      // generate random numbers.
      for (size_t i = 0; i < set_size; i++) {
        // If the element doesn't exist in exclude.
        if (sampled_idxs.find(i) == sampled_idxs.end()) {
          out->push_back(i);
        }
      }
    }
  }

private:
  std::shared_ptr<ArrayHeap<ValueType>> edge_selector_;
  std::shared_ptr<ArrayHeap<ValueType>> node_selector_;
1832
1833
1834
1835

  NDArray edge_weight_;
  int64_t curr_batch_id_;
  int64_t max_batch_id_;
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
};

template class WeightedEdgeSamplerObject<float>;

class FloatWeightedEdgeSampler: public ObjectRef {
 public:
  FloatWeightedEdgeSampler() {}
  explicit FloatWeightedEdgeSampler(std::shared_ptr<runtime::Object> obj): ObjectRef(obj) {}

  WeightedEdgeSamplerObject<float>* operator->() const {
    return static_cast<WeightedEdgeSamplerObject<float>*>(obj_.get());
  }

  std::shared_ptr<WeightedEdgeSamplerObject<float>> sptr() const {
    return CHECK_NOTNULL(std::dynamic_pointer_cast<WeightedEdgeSamplerObject<float>>(obj_));
  }

  operator bool() const { return this->defined(); }
  using ContainerType = WeightedEdgeSamplerObject<float>;
};

DGL_REGISTER_GLOBAL("sampling._CAPI_CreateWeightedEdgeSampler")
1858
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1859
1860
1861
1862
1863
1864
1865
    // arguments
    GraphRef g = args[0];
    IdArray seed_edges = args[1];
    NDArray edge_weight = args[2];
    NDArray node_weight = args[3];
    const int64_t batch_size = args[4];
    const int64_t max_num_workers = args[5];
1866
1867
1868
1869
1870
1871
1872
    const bool replacement = args[6];
    const bool reset = args[7];
    const std::string neg_mode = args[8];
    const int64_t neg_sample_size = args[9];
    const bool exclude_positive = args[10];
    const bool check_false_neg = args[11];
    IdArray relations = args[12];
1873
    const int64_t chunk_size = args[13];
1874
1875
1876
1877

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
    CHECK(aten::IsValidIdArray(seed_edges));
1878
1879
    CHECK_EQ(seed_edges->ctx.device_type, kDLCPU)
      << "WeightedEdgeSampler only support CPU sampling";
1880
1881
    CHECK(edge_weight->dtype.code == kDLFloat) << "edge_weight should be FloatType";
    CHECK(edge_weight->dtype.bits == 32) << "WeightedEdgeSampler only support float weight";
1882
1883
    CHECK_EQ(edge_weight->ctx.device_type, kDLCPU)
      << "WeightedEdgeSampler only support CPU sampling";
1884
1885
1886
    if (node_weight->shape[0] > 0) {
      CHECK(node_weight->dtype.code == kDLFloat) << "node_weight should be FloatType";
      CHECK(node_weight->dtype.bits == 32) << "WeightedEdgeSampler only support float weight";
1887
1888
1889
1890
1891
1892
1893
      CHECK_EQ(node_weight->ctx.device_type, kDLCPU)
        << "WeightedEdgeSampler only support CPU sampling";
    }
    if (relations->shape[0] > 0) {
      CHECK(aten::IsValidIdArray(relations));
      CHECK_EQ(relations->ctx.device_type, kDLCPU)
        << "WeightedEdgeSampler only support CPU sampling";
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
    }
    BuildCoo(*gptr);

    const int64_t num_seeds = seed_edges->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size);

    auto o = std::make_shared<WeightedEdgeSamplerObject<float>>(gptr,
                                                                seed_edges,
                                                                edge_weight,
                                                                node_weight,
                                                                batch_size,
                                                                num_workers,
1907
1908
                                                                replacement,
                                                                reset,
1909
1910
                                                                neg_mode,
                                                                neg_sample_size,
1911
                                                                chunk_size,
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
                                                                exclude_positive,
                                                                check_false_neg,
                                                                relations);
    *rv = o;
});

DGL_REGISTER_GLOBAL("sampling._CAPI_FetchWeightedEdgeSample")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  FloatWeightedEdgeSampler sampler = args[0];
  sampler->Fetch(rv);
1922
1923
});

1924
1925
1926
1927
1928
1929
DGL_REGISTER_GLOBAL("sampling._CAPI_ResetWeightedEdgeSample")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  FloatWeightedEdgeSampler sampler = args[0];
  sampler->Reset();
});

Da Zheng's avatar
Da Zheng committed
1930
}  // namespace dgl