sampler.cc 18.4 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
5
6
7
/*!
 *  Copyright (c) 2018 by Contributors
 * \file graph/sampler.cc
 * \brief DGL sampler implementation
 */

#include <dgl/sampler.h>
8
#include <dmlc/omp.h>
Da Zheng's avatar
Da Zheng committed
9
10
#include <dgl/immutable_graph.h>
#include <algorithm>
11
12
#include <cstdlib>
#include <cmath>
Da Zheng's avatar
Da Zheng committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

#ifdef _MSC_VER
// rand in MS compiler works well in multi-threading.
int rand_r(unsigned *seed) {
  return rand();
}
#endif

namespace dgl {

namespace {

/*
 * ArrayHeap is used to sample elements from vector
 */
class ArrayHeap {
 public:
  explicit ArrayHeap(const std::vector<float>& prob) {
    vec_size_ = prob.size();
    bit_len_ = ceil(log2(vec_size_));
    limit_ = 1 << bit_len_;
    // allocate twice the size
    heap_.resize(limit_ << 1, 0);
    // allocate the leaves
    for (int i = limit_; i < vec_size_+limit_; ++i) {
      heap_[i] = prob[i-limit_];
    }
    // iterate up the tree (this is O(m))
    for (int i = bit_len_-1; i >= 0; --i) {
      for (int j = (1 << i); j < (1 << (i + 1)); ++j) {
        heap_[j] = heap_[j << 1] + heap_[(j << 1) + 1];
      }
    }
  }
  ~ArrayHeap() {}

  /*
   * Remove term from index (this costs O(log m) steps)
   */
  void Delete(size_t index) {
    size_t i = index + limit_;
    float w = heap_[i];
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] -= w;
      i = i >> 1;
    }
  }

  /*
   * Add value w to index (this costs O(log m) steps)
   */
  void Add(size_t index, float w) {
    size_t i = index + limit_;
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] += w;
      i = i >> 1;
    }
  }

  /*
   * Sample from arrayHeap
   */
  size_t Sample(unsigned int* seed) {
    float xi = heap_[1] * (rand_r(seed)%100/101.0);
    int i = 1;
    while (i < limit_) {
      i = i << 1;
      if (xi >= heap_[i]) {
        xi -= heap_[i];
        i += 1;
      }
    }
    return i - limit_;
  }

  /*
   * Sample a vector by given the size n
   */
  void SampleWithoutReplacement(size_t n, std::vector<size_t>* samples, unsigned int* seed) {
    // sample n elements
    for (size_t i = 0; i < n; ++i) {
      samples->at(i) = this->Sample(seed);
      this->Delete(samples->at(i));
    }
  }

 private:
  int vec_size_;  // sample size
  int bit_len_;   // bit size
  int limit_;
  std::vector<float> heap_;
};

/*
 * Uniformly sample integers from [0, set_size) without replacement.
 */
void RandomSample(size_t set_size, size_t num, std::vector<size_t>* out, unsigned int* seed) {
  std::unordered_set<size_t> sampled_idxs;
  while (sampled_idxs.size() < num) {
    sampled_idxs.insert(rand_r(seed) % set_size);
  }
  out->clear();
  out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
}

/*
 * For a sparse array whose non-zeros are represented by nz_idxs,
 * negate the sparse array and outputs the non-zeros in the negated array.
 */
void NegateArray(const std::vector<size_t> &nz_idxs,
                 size_t arr_size,
                 std::vector<size_t>* out) {
  // nz_idxs must have been sorted.
  auto it = nz_idxs.begin();
  size_t i = 0;
  CHECK_GT(arr_size, nz_idxs.back());
  for (; i < arr_size && it != nz_idxs.end(); i++) {
    if (*it == i) {
      it++;
      continue;
    }
    out->push_back(i);
  }
  for (; i < arr_size; i++) {
    out->push_back(i);
  }
}

/*
 * Uniform sample vertices from a list of vertices.
 */
void GetUniformSample(const dgl_id_t* edge_id_list,
                      const dgl_id_t* vid_list,
                      const size_t ver_len,
                      const size_t max_num_neighbor,
                      std::vector<dgl_id_t>* out_ver,
                      std::vector<dgl_id_t>* out_edge,
                      unsigned int* seed) {
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // If we just sample a small number of elements from a large neighbor list.
  std::vector<size_t> sorted_idxs;
  if (ver_len > max_num_neighbor * 2) {
    sorted_idxs.reserve(max_num_neighbor);
    RandomSample(ver_len, max_num_neighbor, &sorted_idxs, seed);
    std::sort(sorted_idxs.begin(), sorted_idxs.end());
  } else {
    std::vector<size_t> negate;
    negate.reserve(ver_len - max_num_neighbor);
    RandomSample(ver_len, ver_len - max_num_neighbor,
                 &negate, seed);
    std::sort(negate.begin(), negate.end());
    NegateArray(negate, ver_len, &sorted_idxs);
  }
  // verify the result.
  CHECK_EQ(sorted_idxs.size(), max_num_neighbor);
  for (size_t i = 1; i < sorted_idxs.size(); i++) {
    CHECK_GT(sorted_idxs[i], sorted_idxs[i - 1]);
  }
  for (auto idx : sorted_idxs) {
    out_ver->push_back(vid_list[idx]);
    out_edge->push_back(edge_id_list[idx]);
  }
}

/*
 * Non-uniform sample via ArrayHeap
 */
void GetNonUniformSample(const float* probability,
                         const dgl_id_t* edge_id_list,
                         const dgl_id_t* vid_list,
                         const size_t ver_len,
                         const size_t max_num_neighbor,
                         std::vector<dgl_id_t>* out_ver,
                         std::vector<dgl_id_t>* out_edge,
                         unsigned int* seed) {
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // Make sample
  std::vector<size_t> sp_index(max_num_neighbor);
  std::vector<float> sp_prob(ver_len);
  for (size_t i = 0; i < ver_len; ++i) {
    sp_prob[i] = probability[vid_list[i]];
  }
  ArrayHeap arrayHeap(sp_prob);
  arrayHeap.SampleWithoutReplacement(max_num_neighbor, &sp_index, seed);
  out_ver->resize(max_num_neighbor);
  out_edge->resize(max_num_neighbor);
  for (size_t i = 0; i < max_num_neighbor; ++i) {
    size_t idx = sp_index[i];
    out_ver->at(i) = vid_list[idx];
    out_edge->at(i) = edge_id_list[idx];
  }
  sort(out_ver->begin(), out_ver->end());
  sort(out_edge->begin(), out_edge->end());
}

/*
 * Used for subgraph sampling
 */
struct neigh_list {
  std::vector<dgl_id_t> neighs;
  std::vector<dgl_id_t> edges;
  neigh_list(const std::vector<dgl_id_t> &_neighs,
             const std::vector<dgl_id_t> &_edges)
    : neighs(_neighs), edges(_edges) {}
};

struct neighbor_info {
  dgl_id_t id;
  size_t pos;
  size_t num_edges;

  neighbor_info(dgl_id_t id, size_t pos, size_t num_edges) {
    this->id = id;
    this->pos = pos;
    this->num_edges = num_edges;
  }
};

NodeFlow ConstructNodeFlow(std::vector<dgl_id_t> neighbor_list,
                           std::vector<dgl_id_t> edge_list,
                           std::vector<size_t> layer_offsets,
                           std::vector<std::pair<dgl_id_t, int> > *sub_vers,
                           std::vector<neighbor_info> *neigh_pos,
                           const std::string &edge_type,
                           int64_t num_edges, int num_hops, bool is_multigraph) {
  NodeFlow nf;
  uint64_t num_vertices = sub_vers->size();
  nf.node_mapping = IdArray::Empty({static_cast<int64_t>(num_vertices)},
                                   DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  nf.edge_mapping = IdArray::Empty({static_cast<int64_t>(num_edges)},
                                   DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  nf.layer_offsets = IdArray::Empty({static_cast<int64_t>(num_hops + 1)},
                                    DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});
  nf.flow_offsets = IdArray::Empty({static_cast<int64_t>(num_hops)},
                                    DLDataType{kDLInt, 64, 1}, DLContext{kDLCPU, 0});

  dgl_id_t *node_map_data = static_cast<dgl_id_t *>(nf.node_mapping->data);
  dgl_id_t *layer_off_data = static_cast<dgl_id_t *>(nf.layer_offsets->data);
  dgl_id_t *flow_off_data = static_cast<dgl_id_t *>(nf.flow_offsets->data);
  dgl_id_t *edge_map_data = static_cast<dgl_id_t *>(nf.edge_mapping->data);

  // Construct sub_csr_graph
  auto subg_csr = std::make_shared<ImmutableGraph::CSR>(num_vertices, num_edges);
  subg_csr->indices.resize(num_edges);
  subg_csr->edge_ids.resize(num_edges);
  dgl_id_t* col_list_out = subg_csr->indices.data();
  int64_t* indptr_out = subg_csr->indptr.data();
  size_t collected_nedges = 0;

  // The data from the previous steps:
  // * node data: sub_vers (vid, layer), neigh_pos,
  // * edge data: neighbor_list, edge_list, probability.
  // * layer_offsets: the offset in sub_vers.
  dgl_id_t ver_id = 0;
  std::vector<std::unordered_map<dgl_id_t, dgl_id_t>> layer_ver_maps;
  layer_ver_maps.resize(num_hops);
  size_t out_node_idx = 0;
  for (int layer_id = num_hops - 1; layer_id >= 0; layer_id--) {
    // We sort the vertices in a layer so that we don't need to sort the neighbor Ids
    // after remap to a subgraph.
    std::sort(sub_vers->begin() + layer_offsets[layer_id],
              sub_vers->begin() + layer_offsets[layer_id + 1],
              [](const std::pair<dgl_id_t, dgl_id_t> &a1,
                 const std::pair<dgl_id_t, dgl_id_t> &a2) {
      return a1.first < a2.first;
    });

    // Save the sampled vertices and its layer Id.
    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      node_map_data[out_node_idx++] = sub_vers->at(i).first;
      layer_ver_maps[layer_id].insert(std::pair<dgl_id_t, dgl_id_t>(sub_vers->at(i).first,
                                                                    ver_id++));
295
      CHECK_EQ(sub_vers->at(i).second, layer_id);
Da Zheng's avatar
Da Zheng committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    }
  }
  CHECK(out_node_idx == num_vertices);

  // sampling algorithms have to start from the seed nodes, so the seed nodes are
  // in the first layer and the input nodes are in the last layer.
  // When we expose the sampled graph to a Python user, we say the input nodes
  // are in the first layer and the seed nodes are in the last layer.
  // Thus, when we copy sampled results to a CSR, we need to reverse the order of layers.
  size_t row_idx = 0;
  for (size_t i = layer_offsets[num_hops - 1]; i < layer_offsets[num_hops]; i++) {
    indptr_out[row_idx++] = 0;
  }
  layer_off_data[0] = 0;
  layer_off_data[1] = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
311
  int out_layer_idx = 1;
Da Zheng's avatar
Da Zheng committed
312
313
314
315
316
317
318
319
320
  for (int layer_id = num_hops - 2; layer_id >= 0; layer_id--) {
    std::sort(neigh_pos->begin() + layer_offsets[layer_id],
              neigh_pos->begin() + layer_offsets[layer_id + 1],
              [](const neighbor_info &a1, const neighbor_info &a2) {
                return a1.id < a2.id;
              });

    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      dgl_id_t dst_id = sub_vers->at(i).first;
321
      CHECK_EQ(dst_id, neigh_pos->at(i).id);
Da Zheng's avatar
Da Zheng committed
322
      size_t pos = neigh_pos->at(i).pos;
323
      CHECK_LE(pos, neighbor_list.size());
Da Zheng's avatar
Da Zheng committed
324
      size_t num_edges = neigh_pos->at(i).num_edges;
325
      if (neighbor_list.empty()) CHECK_EQ(num_edges, 0);
Da Zheng's avatar
Da Zheng committed
326
327
328
329
330

      // We need to map the Ids of the neighbors to the subgraph.
      auto neigh_it = neighbor_list.begin() + pos;
      for (size_t i = 0; i < num_edges; i++) {
        dgl_id_t neigh = *(neigh_it + i);
331
        CHECK(layer_ver_maps[layer_id + 1].find(neigh) != layer_ver_maps[layer_id + 1].end());
Da Zheng's avatar
Da Zheng committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        col_list_out[collected_nedges + i] = layer_ver_maps[layer_id + 1][neigh];
      }
      // We can simply copy the edge Ids.
      std::copy_n(edge_list.begin() + pos,
                  num_edges, edge_map_data + collected_nedges);
      collected_nedges += num_edges;
      indptr_out[row_idx+1] = indptr_out[row_idx] + num_edges;
      row_idx++;
    }
    layer_off_data[out_layer_idx + 1] = layer_off_data[out_layer_idx]
        + layer_offsets[layer_id + 1] - layer_offsets[layer_id];
    out_layer_idx++;
  }
  CHECK(row_idx == num_vertices);
  CHECK(indptr_out[row_idx] == num_edges);
  CHECK(out_layer_idx == num_hops);
  CHECK(layer_off_data[out_layer_idx] == num_vertices);

  // Copy flow offsets.
  flow_off_data[0] = 0;
352
353
  int out_flow_idx = 0;
  for (size_t i = 0; i < layer_offsets.size() - 2; i++) {
Da Zheng's avatar
Da Zheng committed
354
355
356
357
358
    size_t num_edges = subg_csr->GetDegree(layer_off_data[i + 1], layer_off_data[i + 2]);
    flow_off_data[out_flow_idx + 1] = flow_off_data[out_flow_idx] + num_edges;
    out_flow_idx++;
  }
  CHECK(out_flow_idx == num_hops - 1);
359
  CHECK(flow_off_data[num_hops - 1] == static_cast<uint64_t>(num_edges));
Da Zheng's avatar
Da Zheng committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

  for (size_t i = 0; i < subg_csr->edge_ids.size(); i++) {
    subg_csr->edge_ids[i] = i;
  }

  if (edge_type == "in") {
    nf.graph = GraphPtr(new ImmutableGraph(subg_csr, nullptr, is_multigraph));
  } else {
    nf.graph = GraphPtr(new ImmutableGraph(nullptr, subg_csr, is_multigraph));
  }

  return nf;
}

NodeFlow SampleSubgraph(const ImmutableGraph *graph,
                        IdArray seed_arr,
                        const float* probability,
                        const std::string &edge_type,
                        int num_hops,
                        size_t num_neighbor) {
  unsigned int time_seed = time(nullptr);
  size_t num_seeds = seed_arr->shape[0];
  auto orig_csr = edge_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
  const dgl_id_t* val_list = orig_csr->edge_ids.data();
  const dgl_id_t* col_list = orig_csr->indices.data();
  const int64_t* indptr = orig_csr->indptr.data();
  const dgl_id_t* seed = static_cast<dgl_id_t*>(seed_arr->data);

  std::unordered_set<dgl_id_t> sub_ver_map;  // The vertex Ids in a layer.
  std::vector<std::pair<dgl_id_t, int> > sub_vers;
  sub_vers.reserve(num_seeds * 10);
  // add seed vertices
  for (size_t i = 0; i < num_seeds; ++i) {
    auto ret = sub_ver_map.insert(seed[i]);
    // If the vertex is inserted successfully.
    if (ret.second) {
      sub_vers.emplace_back(seed[i], 0);
    }
  }
  std::vector<dgl_id_t> tmp_sampled_src_list;
  std::vector<dgl_id_t> tmp_sampled_edge_list;
  // ver_id, position
  std::vector<neighbor_info> neigh_pos;
  neigh_pos.reserve(num_seeds);
  std::vector<dgl_id_t> neighbor_list;
  std::vector<dgl_id_t> edge_list;
  std::vector<size_t> layer_offsets(num_hops + 1);
  int64_t num_edges = 0;

  layer_offsets[0] = 0;
  layer_offsets[1] = sub_vers.size();
411
  for (int layer_id = 1; layer_id < num_hops; layer_id++) {
Da Zheng's avatar
Da Zheng committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    // We need to avoid resampling the same node in a layer, but we allow a node
    // to be resampled in multiple layers. We use `sub_ver_map` to keep track of
    // sampled nodes in a layer, and clear it when entering a new layer.
    sub_ver_map.clear();
    // Previous iteration collects all nodes in sub_vers, which are collected
    // in the previous layer. sub_vers is used both as a node collection and a queue.
    for (size_t idx = layer_offsets[layer_id - 1]; idx < layer_offsets[layer_id]; idx++) {
      dgl_id_t dst_id = sub_vers[idx].first;
      const int cur_node_level = sub_vers[idx].second;

      tmp_sampled_src_list.clear();
      tmp_sampled_edge_list.clear();
      dgl_id_t ver_len = *(indptr+dst_id+1) - *(indptr+dst_id);
      if (probability == nullptr) {  // uniform-sample
        GetUniformSample(val_list + *(indptr + dst_id),
                         col_list + *(indptr + dst_id),
                         ver_len,
                         num_neighbor,
                         &tmp_sampled_src_list,
                         &tmp_sampled_edge_list,
                         &time_seed);
      } else {  // non-uniform-sample
        GetNonUniformSample(probability,
                            val_list + *(indptr + dst_id),
                            col_list + *(indptr + dst_id),
                            ver_len,
                            num_neighbor,
                            &tmp_sampled_src_list,
                            &tmp_sampled_edge_list,
                            &time_seed);
      }
      CHECK_EQ(tmp_sampled_src_list.size(), tmp_sampled_edge_list.size());
      neigh_pos.emplace_back(dst_id, neighbor_list.size(), tmp_sampled_src_list.size());
      // Then push the vertices
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        neighbor_list.push_back(tmp_sampled_src_list[i]);
      }
      // Finally we push the edge list
      for (size_t i = 0; i < tmp_sampled_edge_list.size(); ++i) {
        edge_list.push_back(tmp_sampled_edge_list[i]);
      }
      num_edges += tmp_sampled_src_list.size();
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        // We need to add the neighbor in the hashtable here. This ensures that
        // the vertex in the queue is unique. If we see a vertex before, we don't
        // need to add it to the queue again.
        auto ret = sub_ver_map.insert(tmp_sampled_src_list[i]);
        // If the sampled neighbor is inserted to the map successfully.
        if (ret.second) {
          sub_vers.emplace_back(tmp_sampled_src_list[i], cur_node_level + 1);
        }
      }
    }
    layer_offsets[layer_id + 1] = layer_offsets[layer_id] + sub_ver_map.size();
    CHECK_EQ(layer_offsets[layer_id + 1], sub_vers.size());
  }

  return ConstructNodeFlow(neighbor_list, edge_list, layer_offsets, &sub_vers, &neigh_pos,
                           edge_type, num_edges, num_hops, graph->IsMultigraph());
}

473
}  // namespace
Da Zheng's avatar
Da Zheng committed
474
475
476
477
478
479
480
481
482
483
484
485

NodeFlow SamplerOp::NeighborUniformSample(const ImmutableGraph *graph, IdArray seeds,
                                          const std::string &edge_type,
                                          int num_hops, int expand_factor) {
  return SampleSubgraph(graph,
                        seeds,                 // seed vector
                        nullptr,               // sample_id_probability
                        edge_type,
                        num_hops + 1,
                        expand_factor);
}

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
IdArray SamplerOp::RandomWalk(
    const GraphInterface *gptr,
    IdArray seeds,
    int num_traces,
    int num_hops) {
  const int num_nodes = seeds->shape[0];
  const dgl_id_t *seed_ids = static_cast<dgl_id_t *>(seeds->data);
  IdArray traces = IdArray::Empty(
      {num_nodes, num_traces, num_hops + 1},
      DLDataType{kDLInt, 64, 1},
      DLContext{kDLCPU, 0});
  dgl_id_t *trace_data = static_cast<dgl_id_t *>(traces->data);

#pragma omp parallel
  {
    // get per-thread seed
    unsigned int random_seed = time(nullptr) ^ omp_get_thread_num();

#pragma omp for
    for (int i = 0; i < num_nodes; ++i) {
      const dgl_id_t seed_id = seed_ids[i];

      for (int j = 0; j < num_traces; ++j) {
        dgl_id_t cur = seed_id;
        const int kmax = num_hops + 1;

        for (int k = 0; k < kmax; ++k) {
          const size_t offset = ((size_t)i * num_traces + j) * kmax + k;
          trace_data[offset] = cur;

          const auto succ = gptr->SuccVec(cur);
          const size_t size = succ.size();
          cur = succ[rand_r(&random_seed) % size];
        }
      }
    }
  }

  return traces;
}

Da Zheng's avatar
Da Zheng committed
527
}  // namespace dgl