sampler.cc 30.1 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
5
6
7
/*!
 *  Copyright (c) 2018 by Contributors
 * \file graph/sampler.cc
 * \brief DGL sampler implementation
 */
#include <dgl/sampler.h>
#include <dgl/immutable_graph.h>
8
9
#include <dgl/runtime/container.h>
#include <dgl/packed_func_ext.h>
10
#include <dmlc/omp.h>
Da Zheng's avatar
Da Zheng committed
11
#include <algorithm>
12
13
#include <cstdlib>
#include <cmath>
14
#include <numeric>
15
#include "../c_api_common.h"
Da Zheng's avatar
Da Zheng committed
16

17
using namespace dgl::runtime;
18

Da Zheng's avatar
Da Zheng committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
namespace dgl {

namespace {
/*
 * ArrayHeap is used to sample elements from vector
 */
class ArrayHeap {
 public:
  explicit ArrayHeap(const std::vector<float>& prob) {
    vec_size_ = prob.size();
    bit_len_ = ceil(log2(vec_size_));
    limit_ = 1 << bit_len_;
    // allocate twice the size
    heap_.resize(limit_ << 1, 0);
    // allocate the leaves
    for (int i = limit_; i < vec_size_+limit_; ++i) {
      heap_[i] = prob[i-limit_];
    }
    // iterate up the tree (this is O(m))
    for (int i = bit_len_-1; i >= 0; --i) {
      for (int j = (1 << i); j < (1 << (i + 1)); ++j) {
        heap_[j] = heap_[j << 1] + heap_[(j << 1) + 1];
      }
    }
  }
  ~ArrayHeap() {}

  /*
   * Remove term from index (this costs O(log m) steps)
   */
  void Delete(size_t index) {
    size_t i = index + limit_;
    float w = heap_[i];
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] -= w;
      i = i >> 1;
    }
  }

  /*
   * Add value w to index (this costs O(log m) steps)
   */
  void Add(size_t index, float w) {
    size_t i = index + limit_;
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] += w;
      i = i >> 1;
    }
  }

  /*
   * Sample from arrayHeap
   */
  size_t Sample(unsigned int* seed) {
    float xi = heap_[1] * (rand_r(seed)%100/101.0);
    int i = 1;
    while (i < limit_) {
      i = i << 1;
      if (xi >= heap_[i]) {
        xi -= heap_[i];
        i += 1;
      }
    }
    return i - limit_;
  }

  /*
   * Sample a vector by given the size n
   */
  void SampleWithoutReplacement(size_t n, std::vector<size_t>* samples, unsigned int* seed) {
    // sample n elements
    for (size_t i = 0; i < n; ++i) {
      samples->at(i) = this->Sample(seed);
      this->Delete(samples->at(i));
    }
  }

 private:
  int vec_size_;  // sample size
  int bit_len_;   // bit size
  int limit_;
  std::vector<float> heap_;
};

/*
 * Uniformly sample integers from [0, set_size) without replacement.
 */
void RandomSample(size_t set_size, size_t num, std::vector<size_t>* out, unsigned int* seed) {
  std::unordered_set<size_t> sampled_idxs;
  while (sampled_idxs.size() < num) {
    sampled_idxs.insert(rand_r(seed) % set_size);
  }
  out->clear();
  out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
}

/*
 * For a sparse array whose non-zeros are represented by nz_idxs,
 * negate the sparse array and outputs the non-zeros in the negated array.
 */
void NegateArray(const std::vector<size_t> &nz_idxs,
                 size_t arr_size,
                 std::vector<size_t>* out) {
  // nz_idxs must have been sorted.
  auto it = nz_idxs.begin();
  size_t i = 0;
  CHECK_GT(arr_size, nz_idxs.back());
  for (; i < arr_size && it != nz_idxs.end(); i++) {
    if (*it == i) {
      it++;
      continue;
    }
    out->push_back(i);
  }
  for (; i < arr_size; i++) {
    out->push_back(i);
  }
}

/*
 * Uniform sample vertices from a list of vertices.
 */
void GetUniformSample(const dgl_id_t* edge_id_list,
                      const dgl_id_t* vid_list,
                      const size_t ver_len,
                      const size_t max_num_neighbor,
                      std::vector<dgl_id_t>* out_ver,
                      std::vector<dgl_id_t>* out_edge,
                      unsigned int* seed) {
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // If we just sample a small number of elements from a large neighbor list.
  std::vector<size_t> sorted_idxs;
  if (ver_len > max_num_neighbor * 2) {
    sorted_idxs.reserve(max_num_neighbor);
    RandomSample(ver_len, max_num_neighbor, &sorted_idxs, seed);
    std::sort(sorted_idxs.begin(), sorted_idxs.end());
  } else {
    std::vector<size_t> negate;
    negate.reserve(ver_len - max_num_neighbor);
    RandomSample(ver_len, ver_len - max_num_neighbor,
                 &negate, seed);
    std::sort(negate.begin(), negate.end());
    NegateArray(negate, ver_len, &sorted_idxs);
  }
  // verify the result.
  CHECK_EQ(sorted_idxs.size(), max_num_neighbor);
  for (size_t i = 1; i < sorted_idxs.size(); i++) {
    CHECK_GT(sorted_idxs[i], sorted_idxs[i - 1]);
  }
  for (auto idx : sorted_idxs) {
    out_ver->push_back(vid_list[idx]);
    out_edge->push_back(edge_id_list[idx]);
  }
}

/*
 * Non-uniform sample via ArrayHeap
 */
void GetNonUniformSample(const float* probability,
                         const dgl_id_t* edge_id_list,
                         const dgl_id_t* vid_list,
                         const size_t ver_len,
                         const size_t max_num_neighbor,
                         std::vector<dgl_id_t>* out_ver,
                         std::vector<dgl_id_t>* out_edge,
                         unsigned int* seed) {
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // Make sample
  std::vector<size_t> sp_index(max_num_neighbor);
  std::vector<float> sp_prob(ver_len);
  for (size_t i = 0; i < ver_len; ++i) {
    sp_prob[i] = probability[vid_list[i]];
  }
  ArrayHeap arrayHeap(sp_prob);
  arrayHeap.SampleWithoutReplacement(max_num_neighbor, &sp_index, seed);
  out_ver->resize(max_num_neighbor);
  out_edge->resize(max_num_neighbor);
  for (size_t i = 0; i < max_num_neighbor; ++i) {
    size_t idx = sp_index[i];
    out_ver->at(i) = vid_list[idx];
    out_edge->at(i) = edge_id_list[idx];
  }
  sort(out_ver->begin(), out_ver->end());
  sort(out_edge->begin(), out_edge->end());
}

/*
 * Used for subgraph sampling
 */
struct neigh_list {
  std::vector<dgl_id_t> neighs;
  std::vector<dgl_id_t> edges;
  neigh_list(const std::vector<dgl_id_t> &_neighs,
             const std::vector<dgl_id_t> &_edges)
    : neighs(_neighs), edges(_edges) {}
};

struct neighbor_info {
  dgl_id_t id;
  size_t pos;
  size_t num_edges;

  neighbor_info(dgl_id_t id, size_t pos, size_t num_edges) {
    this->id = id;
    this->pos = pos;
    this->num_edges = num_edges;
  }
};

NodeFlow ConstructNodeFlow(std::vector<dgl_id_t> neighbor_list,
                           std::vector<dgl_id_t> edge_list,
                           std::vector<size_t> layer_offsets,
                           std::vector<std::pair<dgl_id_t, int> > *sub_vers,
                           std::vector<neighbor_info> *neigh_pos,
                           const std::string &edge_type,
                           int64_t num_edges, int num_hops, bool is_multigraph) {
245
  NodeFlow nf = NodeFlow::Create();
Da Zheng's avatar
Da Zheng committed
246
  uint64_t num_vertices = sub_vers->size();
247
248
249
250
  nf->node_mapping = aten::NewIdArray(num_vertices);
  nf->edge_mapping = aten::NewIdArray(num_edges);
  nf->layer_offsets = aten::NewIdArray(num_hops + 1);
  nf->flow_offsets = aten::NewIdArray(num_hops);
Da Zheng's avatar
Da Zheng committed
251

252
253
254
255
  dgl_id_t *node_map_data = static_cast<dgl_id_t *>(nf->node_mapping->data);
  dgl_id_t *layer_off_data = static_cast<dgl_id_t *>(nf->layer_offsets->data);
  dgl_id_t *flow_off_data = static_cast<dgl_id_t *>(nf->flow_offsets->data);
  dgl_id_t *edge_map_data = static_cast<dgl_id_t *>(nf->edge_mapping->data);
Da Zheng's avatar
Da Zheng committed
256
257

  // Construct sub_csr_graph
258
259
260
261
262
  // TODO(minjie): is nodeflow a multigraph?
  auto subg_csr = CSRPtr(new CSR(num_vertices, num_edges, is_multigraph));
  dgl_id_t* indptr_out = static_cast<dgl_id_t*>(subg_csr->indptr()->data);
  dgl_id_t* col_list_out = static_cast<dgl_id_t*>(subg_csr->indices()->data);
  dgl_id_t* eid_out = static_cast<dgl_id_t*>(subg_csr->edge_ids()->data);
Da Zheng's avatar
Da Zheng committed
263
264
265
266
267
268
269
270
271
272
273
274
  size_t collected_nedges = 0;

  // The data from the previous steps:
  // * node data: sub_vers (vid, layer), neigh_pos,
  // * edge data: neighbor_list, edge_list, probability.
  // * layer_offsets: the offset in sub_vers.
  dgl_id_t ver_id = 0;
  std::vector<std::unordered_map<dgl_id_t, dgl_id_t>> layer_ver_maps;
  layer_ver_maps.resize(num_hops);
  size_t out_node_idx = 0;
  for (int layer_id = num_hops - 1; layer_id >= 0; layer_id--) {
    // We sort the vertices in a layer so that we don't need to sort the neighbor Ids
275
276
277
278
279
280
281
282
283
284
285
    // after remap to a subgraph. However, we don't need to sort the first layer
    // because we want the order of the nodes in the first layer is the same as
    // the input seed nodes.
    if (layer_id > 0) {
      std::sort(sub_vers->begin() + layer_offsets[layer_id],
                sub_vers->begin() + layer_offsets[layer_id + 1],
                [](const std::pair<dgl_id_t, dgl_id_t> &a1,
                   const std::pair<dgl_id_t, dgl_id_t> &a2) {
        return a1.first < a2.first;
      });
    }
Da Zheng's avatar
Da Zheng committed
286
287
288
289
290
291

    // Save the sampled vertices and its layer Id.
    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      node_map_data[out_node_idx++] = sub_vers->at(i).first;
      layer_ver_maps[layer_id].insert(std::pair<dgl_id_t, dgl_id_t>(sub_vers->at(i).first,
                                                                    ver_id++));
292
      CHECK_EQ(sub_vers->at(i).second, layer_id);
Da Zheng's avatar
Da Zheng committed
293
294
295
296
297
298
299
300
301
    }
  }
  CHECK(out_node_idx == num_vertices);

  // sampling algorithms have to start from the seed nodes, so the seed nodes are
  // in the first layer and the input nodes are in the last layer.
  // When we expose the sampled graph to a Python user, we say the input nodes
  // are in the first layer and the seed nodes are in the last layer.
  // Thus, when we copy sampled results to a CSR, we need to reverse the order of layers.
302
303
  std::fill(indptr_out, indptr_out + num_vertices + 1, 0);
  size_t row_idx = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
Da Zheng's avatar
Da Zheng committed
304
305
  layer_off_data[0] = 0;
  layer_off_data[1] = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
306
  int out_layer_idx = 1;
Da Zheng's avatar
Da Zheng committed
307
  for (int layer_id = num_hops - 2; layer_id >= 0; layer_id--) {
308
309
310
311
312
313
314
315
316
    // Because we don't sort the vertices in the first layer above, we can't sort
    // the neighbor positions of the vertices in the first layer either.
    if (layer_id > 0) {
      std::sort(neigh_pos->begin() + layer_offsets[layer_id],
                neigh_pos->begin() + layer_offsets[layer_id + 1],
                [](const neighbor_info &a1, const neighbor_info &a2) {
                  return a1.id < a2.id;
                });
    }
Da Zheng's avatar
Da Zheng committed
317
318
319

    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      dgl_id_t dst_id = sub_vers->at(i).first;
320
      CHECK_EQ(dst_id, neigh_pos->at(i).id);
Da Zheng's avatar
Da Zheng committed
321
      size_t pos = neigh_pos->at(i).pos;
322
      CHECK_LE(pos, neighbor_list.size());
323
324
      const size_t nedges = neigh_pos->at(i).num_edges;
      if (neighbor_list.empty()) CHECK_EQ(nedges, 0);
Da Zheng's avatar
Da Zheng committed
325
326
327

      // We need to map the Ids of the neighbors to the subgraph.
      auto neigh_it = neighbor_list.begin() + pos;
328
      for (size_t i = 0; i < nedges; i++) {
Da Zheng's avatar
Da Zheng committed
329
        dgl_id_t neigh = *(neigh_it + i);
330
        CHECK(layer_ver_maps[layer_id + 1].find(neigh) != layer_ver_maps[layer_id + 1].end());
Da Zheng's avatar
Da Zheng committed
331
332
333
334
        col_list_out[collected_nedges + i] = layer_ver_maps[layer_id + 1][neigh];
      }
      // We can simply copy the edge Ids.
      std::copy_n(edge_list.begin() + pos,
335
336
337
                  nedges, edge_map_data + collected_nedges);
      collected_nedges += nedges;
      indptr_out[row_idx+1] = indptr_out[row_idx] + nedges;
Da Zheng's avatar
Da Zheng committed
338
339
340
341
342
343
      row_idx++;
    }
    layer_off_data[out_layer_idx + 1] = layer_off_data[out_layer_idx]
        + layer_offsets[layer_id + 1] - layer_offsets[layer_id];
    out_layer_idx++;
  }
344
345
346
347
  CHECK_EQ(row_idx, num_vertices);
  CHECK_EQ(indptr_out[row_idx], num_edges);
  CHECK_EQ(out_layer_idx, num_hops);
  CHECK_EQ(layer_off_data[out_layer_idx], num_vertices);
Da Zheng's avatar
Da Zheng committed
348
349
350

  // Copy flow offsets.
  flow_off_data[0] = 0;
351
352
  int out_flow_idx = 0;
  for (size_t i = 0; i < layer_offsets.size() - 2; i++) {
353
    size_t num_edges = indptr_out[layer_off_data[i + 2]] - indptr_out[layer_off_data[i + 1]];
Da Zheng's avatar
Da Zheng committed
354
355
356
357
    flow_off_data[out_flow_idx + 1] = flow_off_data[out_flow_idx] + num_edges;
    out_flow_idx++;
  }
  CHECK(out_flow_idx == num_hops - 1);
358
  CHECK(flow_off_data[num_hops - 1] == static_cast<uint64_t>(num_edges));
Da Zheng's avatar
Da Zheng committed
359

360
  std::iota(eid_out, eid_out + num_edges, 0);
Da Zheng's avatar
Da Zheng committed
361

362
  if (edge_type == std::string("in")) {
363
    nf->graph = GraphPtr(new ImmutableGraph(subg_csr, nullptr));
Da Zheng's avatar
Da Zheng committed
364
  } else {
365
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, subg_csr));
Da Zheng's avatar
Da Zheng committed
366
367
368
369
370
371
  }

  return nf;
}

NodeFlow SampleSubgraph(const ImmutableGraph *graph,
372
                        const std::vector<dgl_id_t>& seeds,
Da Zheng's avatar
Da Zheng committed
373
374
375
                        const float* probability,
                        const std::string &edge_type,
                        int num_hops,
376
377
                        size_t num_neighbor,
                        const bool add_self_loop) {
378
  CHECK_EQ(graph->NumBits(), 64) << "32 bit graph is not supported yet";
379
  unsigned int time_seed = randseed();
380
  const size_t num_seeds = seeds.size();
Da Zheng's avatar
Da Zheng committed
381
  auto orig_csr = edge_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
382
383
384
  const dgl_id_t* val_list = static_cast<dgl_id_t*>(orig_csr->edge_ids()->data);
  const dgl_id_t* col_list = static_cast<dgl_id_t*>(orig_csr->indices()->data);
  const dgl_id_t* indptr = static_cast<dgl_id_t*>(orig_csr->indptr()->data);
Da Zheng's avatar
Da Zheng committed
385
386
387
388
389
390

  std::unordered_set<dgl_id_t> sub_ver_map;  // The vertex Ids in a layer.
  std::vector<std::pair<dgl_id_t, int> > sub_vers;
  sub_vers.reserve(num_seeds * 10);
  // add seed vertices
  for (size_t i = 0; i < num_seeds; ++i) {
391
    auto ret = sub_ver_map.insert(seeds[i]);
Da Zheng's avatar
Da Zheng committed
392
393
    // If the vertex is inserted successfully.
    if (ret.second) {
394
      sub_vers.emplace_back(seeds[i], 0);
Da Zheng's avatar
Da Zheng committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    }
  }
  std::vector<dgl_id_t> tmp_sampled_src_list;
  std::vector<dgl_id_t> tmp_sampled_edge_list;
  // ver_id, position
  std::vector<neighbor_info> neigh_pos;
  neigh_pos.reserve(num_seeds);
  std::vector<dgl_id_t> neighbor_list;
  std::vector<dgl_id_t> edge_list;
  std::vector<size_t> layer_offsets(num_hops + 1);
  int64_t num_edges = 0;

  layer_offsets[0] = 0;
  layer_offsets[1] = sub_vers.size();
409
  for (int layer_id = 1; layer_id < num_hops; layer_id++) {
Da Zheng's avatar
Da Zheng committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    // We need to avoid resampling the same node in a layer, but we allow a node
    // to be resampled in multiple layers. We use `sub_ver_map` to keep track of
    // sampled nodes in a layer, and clear it when entering a new layer.
    sub_ver_map.clear();
    // Previous iteration collects all nodes in sub_vers, which are collected
    // in the previous layer. sub_vers is used both as a node collection and a queue.
    for (size_t idx = layer_offsets[layer_id - 1]; idx < layer_offsets[layer_id]; idx++) {
      dgl_id_t dst_id = sub_vers[idx].first;
      const int cur_node_level = sub_vers[idx].second;

      tmp_sampled_src_list.clear();
      tmp_sampled_edge_list.clear();
      dgl_id_t ver_len = *(indptr+dst_id+1) - *(indptr+dst_id);
      if (probability == nullptr) {  // uniform-sample
        GetUniformSample(val_list + *(indptr + dst_id),
                         col_list + *(indptr + dst_id),
                         ver_len,
                         num_neighbor,
                         &tmp_sampled_src_list,
                         &tmp_sampled_edge_list,
                         &time_seed);
      } else {  // non-uniform-sample
        GetNonUniformSample(probability,
                            val_list + *(indptr + dst_id),
                            col_list + *(indptr + dst_id),
                            ver_len,
                            num_neighbor,
                            &tmp_sampled_src_list,
                            &tmp_sampled_edge_list,
                            &time_seed);
      }
Da Zheng's avatar
Da Zheng committed
441
442
443
      // If we need to add self loop and it doesn't exist in the sampled neighbor list.
      if (add_self_loop && std::find(tmp_sampled_src_list.begin(), tmp_sampled_src_list.end(),
                                     dst_id) == tmp_sampled_src_list.end()) {
444
        tmp_sampled_src_list.push_back(dst_id);
Da Zheng's avatar
Da Zheng committed
445
446
447
448
449
450
451
452
453
454
        const dgl_id_t *src_list = col_list + *(indptr + dst_id);
        const dgl_id_t *eid_list = val_list + *(indptr + dst_id);
        // TODO(zhengda) this operation has O(N) complexity. It can be pretty slow.
        const dgl_id_t *src = std::find(src_list, src_list + ver_len, dst_id);
        // If there doesn't exist a self loop in the graph.
        // we have to add -1 as the edge id for the self-loop edge.
        if (src == src_list + ver_len)
          tmp_sampled_edge_list.push_back(-1);
        else
          tmp_sampled_edge_list.push_back(eid_list[src - src_list]);
455
      }
Da Zheng's avatar
Da Zheng committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
      CHECK_EQ(tmp_sampled_src_list.size(), tmp_sampled_edge_list.size());
      neigh_pos.emplace_back(dst_id, neighbor_list.size(), tmp_sampled_src_list.size());
      // Then push the vertices
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        neighbor_list.push_back(tmp_sampled_src_list[i]);
      }
      // Finally we push the edge list
      for (size_t i = 0; i < tmp_sampled_edge_list.size(); ++i) {
        edge_list.push_back(tmp_sampled_edge_list[i]);
      }
      num_edges += tmp_sampled_src_list.size();
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        // We need to add the neighbor in the hashtable here. This ensures that
        // the vertex in the queue is unique. If we see a vertex before, we don't
        // need to add it to the queue again.
        auto ret = sub_ver_map.insert(tmp_sampled_src_list[i]);
        // If the sampled neighbor is inserted to the map successfully.
        if (ret.second) {
          sub_vers.emplace_back(tmp_sampled_src_list[i], cur_node_level + 1);
        }
      }
    }
    layer_offsets[layer_id + 1] = layer_offsets[layer_id] + sub_ver_map.size();
    CHECK_EQ(layer_offsets[layer_id + 1], sub_vers.size());
  }

  return ConstructNodeFlow(neighbor_list, edge_list, layer_offsets, &sub_vers, &neigh_pos,
                           edge_type, num_edges, num_hops, graph->IsMultigraph());
}

486
}  // namespace
Da Zheng's avatar
Da Zheng committed
487

488
489
DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetGraph")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
490
491
    NodeFlow nflow = args[0];
    *rv = nflow->graph;
492
493
494
495
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetNodeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
496
    NodeFlow nflow = args[0];
497
498
499
500
501
    *rv = nflow->node_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetEdgeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
502
    NodeFlow nflow = args[0];
503
504
505
506
507
    *rv = nflow->edge_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetLayerOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
508
    NodeFlow nflow = args[0];
509
510
511
512
513
    *rv = nflow->layer_offsets;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetBlockOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
514
    NodeFlow nflow = args[0];
515
516
517
518
519
    *rv = nflow->flow_offsets;
  });

NodeFlow SamplerOp::NeighborUniformSample(const ImmutableGraph *graph,
                                          const std::vector<dgl_id_t>& seeds,
Da Zheng's avatar
Da Zheng committed
520
                                          const std::string &edge_type,
521
522
                                          int num_hops, int expand_factor,
                                          const bool add_self_loop) {
Da Zheng's avatar
Da Zheng committed
523
524
525
526
527
  return SampleSubgraph(graph,
                        seeds,                 // seed vector
                        nullptr,               // sample_id_probability
                        edge_type,
                        num_hops + 1,
528
529
                        expand_factor,
                        add_self_loop);
Da Zheng's avatar
Da Zheng committed
530
531
}

532
namespace {
533
  void ConstructLayers(const dgl_id_t *indptr,
534
                       const dgl_id_t *indices,
535
536
                       const std::vector<dgl_id_t>& seed_array,
                       IdArray layer_sizes,
537
538
539
540
541
542
543
544
545
                       std::vector<dgl_id_t> *layer_offsets,
                       std::vector<dgl_id_t> *node_mapping,
                       std::vector<int64_t> *actl_layer_sizes,
                       std::vector<float> *probabilities) {
    /*
     * Given a graph and a collection of seed nodes, this function constructs NodeFlow
     * layers via uniform layer-wise sampling, and return the resultant layers and their
     * corresponding probabilities.
     */
546
    std::copy(seed_array.begin(), seed_array.end(), std::back_inserter(*node_mapping));
547
548
    actl_layer_sizes->push_back(node_mapping->size());
    probabilities->insert(probabilities->end(), node_mapping->size(), 1);
549
550
    const int64_t* layer_sizes_data = static_cast<int64_t*>(layer_sizes->data);
    const int64_t num_layers = layer_sizes->shape[0];
551
552
553

    size_t curr = 0;
    size_t next = node_mapping->size();
554
    unsigned int rand_seed = randseed();
555
556
    for (int64_t i = num_layers - 1; i >= 0; --i) {
      const int64_t layer_size = layer_sizes_data[i];
557
558
559
560
561
562
563
564
565
566
567
568
      std::unordered_set<dgl_id_t> candidate_set;
      for (auto j = curr; j != next; ++j) {
        auto src = (*node_mapping)[j];
        candidate_set.insert(indices + indptr[src], indices + indptr[src + 1]);
      }

      std::vector<dgl_id_t> candidate_vector;
      std::copy(candidate_set.begin(), candidate_set.end(),
                std::back_inserter(candidate_vector));

      std::unordered_map<dgl_id_t, size_t> n_occurrences;
      auto n_candidates = candidate_vector.size();
569
      for (int64_t j = 0; j != layer_size; ++j) {
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        auto dst = candidate_vector[rand_r(&rand_seed) % n_candidates];
        if (!n_occurrences.insert(std::make_pair(dst, 1)).second) {
          ++n_occurrences[dst];
        }
      }

      for (auto const &pair : n_occurrences) {
        node_mapping->push_back(pair.first);
        float p = pair.second * n_candidates / static_cast<float>(layer_size);
        probabilities->push_back(p);
      }

      actl_layer_sizes->push_back(node_mapping->size() - next);
      curr = next;
      next = node_mapping->size();
    }
    std::reverse(node_mapping->begin(), node_mapping->end());
    std::reverse(actl_layer_sizes->begin(), actl_layer_sizes->end());
    layer_offsets->push_back(0);
    for (const auto &size : *actl_layer_sizes) {
      layer_offsets->push_back(size + layer_offsets->back());
    }
  }

594
  void ConstructFlows(const dgl_id_t *indptr,
595
596
597
598
                      const dgl_id_t *indices,
                      const dgl_id_t *eids,
                      const std::vector<dgl_id_t> &node_mapping,
                      const std::vector<int64_t> &actl_layer_sizes,
599
600
601
                      std::vector<dgl_id_t> *sub_indptr,
                      std::vector<dgl_id_t> *sub_indices,
                      std::vector<dgl_id_t> *sub_eids,
602
603
604
605
606
607
608
                      std::vector<dgl_id_t> *flow_offsets,
                      std::vector<dgl_id_t> *edge_mapping) {
    /*
     * Given a graph and a sequence of NodeFlow layers, this function constructs dense
     * subgraphs (flows) between consecutive layers.
     */
    auto n_flows = actl_layer_sizes.size() - 1;
609
610
    for (int64_t i = 0; i < actl_layer_sizes.front() + 1; i++)
      sub_indptr->push_back(0);
611
612
613
614
615
616
617
618
619
620
621
622
623
    flow_offsets->push_back(0);
    int64_t first = 0;
    for (size_t i = 0; i < n_flows; ++i) {
      auto src_size = actl_layer_sizes[i];
      std::unordered_map<dgl_id_t, dgl_id_t> source_map;
      for (int64_t j = 0; j < src_size; ++j) {
        source_map.insert(std::make_pair(node_mapping[first + j], first + j));
      }
      auto dst_size = actl_layer_sizes[i + 1];
      for (int64_t j = 0; j < dst_size; ++j) {
        auto dst = node_mapping[first + src_size + j];
        typedef std::pair<dgl_id_t, dgl_id_t> id_pair;
        std::vector<id_pair> neighbor_indices;
624
        for (dgl_id_t k = indptr[dst]; k < indptr[dst + 1]; ++k) {
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
          // TODO(gaiyu): accelerate hash table lookup
          auto ret = source_map.find(indices[k]);
          if (ret != source_map.end()) {
            neighbor_indices.push_back(std::make_pair(ret->second, eids[k]));
          }
        }
        auto cmp = [](const id_pair p, const id_pair q)->bool { return p.first < q.first; };
        std::sort(neighbor_indices.begin(), neighbor_indices.end(), cmp);
        for (const auto &pair : neighbor_indices) {
          sub_indices->push_back(pair.first);
          edge_mapping->push_back(pair.second);
        }
        sub_indptr->push_back(sub_indices->size());
      }
      flow_offsets->push_back(sub_indices->size());
      first += src_size;
    }
    sub_eids->resize(sub_indices->size());
    std::iota(sub_eids->begin(), sub_eids->end(), 0);
  }
}  // namespace

NodeFlow SamplerOp::LayerUniformSample(const ImmutableGraph *graph,
648
                                       const std::vector<dgl_id_t>& seeds,
649
                                       const std::string &neighbor_type,
650
                                       IdArray layer_sizes) {
651
  const auto g_csr = neighbor_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
652
653
654
  const dgl_id_t *indptr = static_cast<dgl_id_t*>(g_csr->indptr()->data);
  const dgl_id_t *indices = static_cast<dgl_id_t*>(g_csr->indices()->data);
  const dgl_id_t *eids = static_cast<dgl_id_t*>(g_csr->edge_ids()->data);
655
656
657
658
659
660
661

  std::vector<dgl_id_t> layer_offsets;
  std::vector<dgl_id_t> node_mapping;
  std::vector<int64_t> actl_layer_sizes;
  std::vector<float> probabilities;
  ConstructLayers(indptr,
                  indices,
662
                  seeds,
663
664
665
666
667
668
                  layer_sizes,
                  &layer_offsets,
                  &node_mapping,
                  &actl_layer_sizes,
                  &probabilities);

669
  std::vector<dgl_id_t> sub_indptr, sub_indices, sub_edge_ids;
670
671
672
673
674
675
676
  std::vector<dgl_id_t> flow_offsets;
  std::vector<dgl_id_t> edge_mapping;
  ConstructFlows(indptr,
                 indices,
                 eids,
                 node_mapping,
                 actl_layer_sizes,
677
678
679
                 &sub_indptr,
                 &sub_indices,
                 &sub_edge_ids,
680
681
                 &flow_offsets,
                 &edge_mapping);
682
683
684
685
686
  // sanity check
  CHECK_GT(sub_indptr.size(), 0);
  CHECK_EQ(sub_indptr[0], 0);
  CHECK_EQ(sub_indptr.back(), sub_indices.size());
  CHECK_EQ(sub_indices.size(), sub_edge_ids.size());
687

688
  NodeFlow nf = NodeFlow::Create();
689
690
691
  auto sub_csr = CSRPtr(new CSR(aten::VecToIdArray(sub_indptr),
                                aten::VecToIdArray(sub_indices),
                                aten::VecToIdArray(sub_edge_ids)));
692
693

  if (neighbor_type == std::string("in")) {
694
    nf->graph = GraphPtr(new ImmutableGraph(sub_csr, nullptr));
695
  } else {
696
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, sub_csr));
697
698
  }

699
700
701
702
  nf->node_mapping = aten::VecToIdArray(node_mapping);
  nf->edge_mapping = aten::VecToIdArray(edge_mapping);
  nf->layer_offsets = aten::VecToIdArray(layer_offsets);
  nf->flow_offsets = aten::VecToIdArray(flow_offsets);
703
704
705
706

  return nf;
}

Da Zheng's avatar
Da Zheng committed
707
708
709
710
711
712
713
714
715
716
717
718
void BuildCsr(const ImmutableGraph &g, const std::string neigh_type) {
  if (neigh_type == "in") {
    auto csr = g.GetInCSR();
    assert(csr);
  } else if (neigh_type == "out") {
    auto csr = g.GetOutCSR();
    assert(csr);
  } else {
    LOG(FATAL) << "We don't support sample from neighbor type " << neigh_type;
  }
}

719
720
721
DGL_REGISTER_GLOBAL("sampling._CAPI_UniformSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
722
    GraphRef g = args[0];
723
    const IdArray seed_nodes = args[1];
724
725
726
727
728
729
730
731
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];
    // process args
732
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
733
734
735
736
737
738
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
    CHECK(IsValidIdArray(seed_nodes));
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
739
740
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
741
    // generate node flows
742
    std::vector<NodeFlow> nflows(num_workers);
743
744
745
746
747
748
749
750
751
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
752
753
      nflows[i] = SamplerOp::NeighborUniformSample(
          gptr.get(), worker_seeds, neigh_type, num_hops, expand_factor, add_self_loop);
754
    }
755
    *rv = List<NodeFlow>(nflows);
756
757
758
759
760
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_LayerSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
761
    GraphRef g = args[0];
762
    const IdArray seed_nodes = args[1];
763
764
765
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
766
    const IdArray layer_sizes = args[5];
767
768
    const std::string neigh_type = args[6];
    // process args
769
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
770
771
772
773
774
775
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
    CHECK(IsValidIdArray(seed_nodes));
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
776
777
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
778
    // generate node flows
779
    std::vector<NodeFlow> nflows(num_workers);
780
781
782
783
784
785
786
787
788
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
789
790
      nflows[i] = SamplerOp::LayerUniformSample(
          gptr.get(), worker_seeds, neigh_type, layer_sizes);
791
    }
792
    *rv = List<NodeFlow>(nflows);
793
794
  });

Da Zheng's avatar
Da Zheng committed
795
}  // namespace dgl