"vscode:/vscode.git/clone" did not exist on "90d6eac2b313968f4210a229efd3a88f243b3438"
sampler.cc 50.8 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
5
6
7
/*!
 *  Copyright (c) 2018 by Contributors
 * \file graph/sampler.cc
 * \brief DGL sampler implementation
 */
#include <dgl/sampler.h>
#include <dgl/immutable_graph.h>
8
9
#include <dgl/runtime/container.h>
#include <dgl/packed_func_ext.h>
10
#include <dgl/random.h>
11
#include <dmlc/omp.h>
Da Zheng's avatar
Da Zheng committed
12
#include <algorithm>
13
14
#include <cstdlib>
#include <cmath>
15
#include <numeric>
16
#include "../c_api_common.h"
17
#include "../array/common.h"  // for ATEN_FLOAT_TYPE_SWITCH
Da Zheng's avatar
Da Zheng committed
18

19
using namespace dgl::runtime;
20

Da Zheng's avatar
Da Zheng committed
21
22
23
24
25
26
namespace dgl {

namespace {
/*
 * ArrayHeap is used to sample elements from vector
 */
27
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
28
29
class ArrayHeap {
 public:
30
  explicit ArrayHeap(const std::vector<ValueType>& prob) {
Da Zheng's avatar
Da Zheng committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    vec_size_ = prob.size();
    bit_len_ = ceil(log2(vec_size_));
    limit_ = 1 << bit_len_;
    // allocate twice the size
    heap_.resize(limit_ << 1, 0);
    // allocate the leaves
    for (int i = limit_; i < vec_size_+limit_; ++i) {
      heap_[i] = prob[i-limit_];
    }
    // iterate up the tree (this is O(m))
    for (int i = bit_len_-1; i >= 0; --i) {
      for (int j = (1 << i); j < (1 << (i + 1)); ++j) {
        heap_[j] = heap_[j << 1] + heap_[(j << 1) + 1];
      }
    }
  }
  ~ArrayHeap() {}

  /*
   * Remove term from index (this costs O(log m) steps)
   */
  void Delete(size_t index) {
    size_t i = index + limit_;
54
    ValueType w = heap_[i];
Da Zheng's avatar
Da Zheng committed
55
56
57
58
59
60
61
62
63
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] -= w;
      i = i >> 1;
    }
  }

  /*
   * Add value w to index (this costs O(log m) steps)
   */
64
  void Add(size_t index, ValueType w) {
Da Zheng's avatar
Da Zheng committed
65
66
67
68
69
70
71
72
73
74
    size_t i = index + limit_;
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] += w;
      i = i >> 1;
    }
  }

  /*
   * Sample from arrayHeap
   */
75
  size_t Sample() {
76
    ValueType xi = heap_[1] * RandomEngine::ThreadLocal()->Uniform<float>();
Da Zheng's avatar
Da Zheng committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    int i = 1;
    while (i < limit_) {
      i = i << 1;
      if (xi >= heap_[i]) {
        xi -= heap_[i];
        i += 1;
      }
    }
    return i - limit_;
  }

  /*
   * Sample a vector by given the size n
   */
91
  void SampleWithoutReplacement(size_t n, std::vector<size_t>* samples) {
Da Zheng's avatar
Da Zheng committed
92
93
    // sample n elements
    for (size_t i = 0; i < n; ++i) {
94
      samples->at(i) = this->Sample();
Da Zheng's avatar
Da Zheng committed
95
96
97
98
99
100
101
102
      this->Delete(samples->at(i));
    }
  }

 private:
  int vec_size_;  // sample size
  int bit_len_;   // bit size
  int limit_;
103
  std::vector<ValueType> heap_;
Da Zheng's avatar
Da Zheng committed
104
105
106
107
108
};

/*
 * Uniformly sample integers from [0, set_size) without replacement.
 */
109
void RandomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
Da Zheng's avatar
Da Zheng committed
110
  out->clear();
Da Zheng's avatar
Da Zheng committed
111
112
113
114
115
116
117
118
119
120
121
122
  if (num < set_size) {
    std::unordered_set<size_t> sampled_idxs;
    while (sampled_idxs.size() < num) {
      sampled_idxs.insert(RandomEngine::ThreadLocal()->RandInt(set_size));
    }
    out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++)
      out->push_back(i);
  }
Da Zheng's avatar
Da Zheng committed
123
124
}

125
126
127
128
129
130
131
void RandomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                  std::vector<size_t>* out) {
  std::unordered_map<size_t, int> sampled_idxs;
  for (auto v : exclude) {
    sampled_idxs.insert(std::pair<size_t, int>(v, 0));
  }
  out->clear();
Da Zheng's avatar
Da Zheng committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  if (num + exclude.size() < set_size) {
    while (sampled_idxs.size() < num + exclude.size()) {
      size_t rand = RandomEngine::ThreadLocal()->RandInt(set_size);
      sampled_idxs.insert(std::pair<size_t, int>(rand, 1));
    }
    for (auto it = sampled_idxs.begin(); it != sampled_idxs.end(); it++) {
      if (it->second) {
        out->push_back(it->first);
      }
    }
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++) {
      // If the element doesn't exist in exclude.
      if (sampled_idxs.find(i) == sampled_idxs.end()) {
        out->push_back(i);
      }
150
151
152
153
    }
  }
}

Da Zheng's avatar
Da Zheng committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
 * For a sparse array whose non-zeros are represented by nz_idxs,
 * negate the sparse array and outputs the non-zeros in the negated array.
 */
void NegateArray(const std::vector<size_t> &nz_idxs,
                 size_t arr_size,
                 std::vector<size_t>* out) {
  // nz_idxs must have been sorted.
  auto it = nz_idxs.begin();
  size_t i = 0;
  CHECK_GT(arr_size, nz_idxs.back());
  for (; i < arr_size && it != nz_idxs.end(); i++) {
    if (*it == i) {
      it++;
      continue;
    }
    out->push_back(i);
  }
  for (; i < arr_size; i++) {
    out->push_back(i);
  }
}

/*
 * Uniform sample vertices from a list of vertices.
 */
void GetUniformSample(const dgl_id_t* edge_id_list,
                      const dgl_id_t* vid_list,
                      const size_t ver_len,
                      const size_t max_num_neighbor,
                      std::vector<dgl_id_t>* out_ver,
185
                      std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
186
187
188
189
190
191
192
193
194
195
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // If we just sample a small number of elements from a large neighbor list.
  std::vector<size_t> sorted_idxs;
  if (ver_len > max_num_neighbor * 2) {
    sorted_idxs.reserve(max_num_neighbor);
196
    RandomSample(ver_len, max_num_neighbor, &sorted_idxs);
Da Zheng's avatar
Da Zheng committed
197
198
199
200
    std::sort(sorted_idxs.begin(), sorted_idxs.end());
  } else {
    std::vector<size_t> negate;
    negate.reserve(ver_len - max_num_neighbor);
201
    RandomSample(ver_len, ver_len - max_num_neighbor, &negate);
Da Zheng's avatar
Da Zheng committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    std::sort(negate.begin(), negate.end());
    NegateArray(negate, ver_len, &sorted_idxs);
  }
  // verify the result.
  CHECK_EQ(sorted_idxs.size(), max_num_neighbor);
  for (size_t i = 1; i < sorted_idxs.size(); i++) {
    CHECK_GT(sorted_idxs[i], sorted_idxs[i - 1]);
  }
  for (auto idx : sorted_idxs) {
    out_ver->push_back(vid_list[idx]);
    out_edge->push_back(edge_id_list[idx]);
  }
}

/*
 * Non-uniform sample via ArrayHeap
218
219
 *
 * \param probability Transition probability on the entire graph, indexed by edge ID
Da Zheng's avatar
Da Zheng committed
220
 */
221
222
template<typename ValueType>
void GetNonUniformSample(const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
223
224
225
226
227
                         const dgl_id_t* edge_id_list,
                         const dgl_id_t* vid_list,
                         const size_t ver_len,
                         const size_t max_num_neighbor,
                         std::vector<dgl_id_t>* out_ver,
228
                         std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
229
230
231
232
233
234
235
236
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // Make sample
  std::vector<size_t> sp_index(max_num_neighbor);
237
  std::vector<ValueType> sp_prob(ver_len);
Da Zheng's avatar
Da Zheng committed
238
  for (size_t i = 0; i < ver_len; ++i) {
239
    sp_prob[i] = probability[edge_id_list[i]];
Da Zheng's avatar
Da Zheng committed
240
  }
241
  ArrayHeap<ValueType> arrayHeap(sp_prob);
242
  arrayHeap.SampleWithoutReplacement(max_num_neighbor, &sp_index);
Da Zheng's avatar
Da Zheng committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
  out_ver->resize(max_num_neighbor);
  out_edge->resize(max_num_neighbor);
  for (size_t i = 0; i < max_num_neighbor; ++i) {
    size_t idx = sp_index[i];
    out_ver->at(i) = vid_list[idx];
    out_edge->at(i) = edge_id_list[idx];
  }
  sort(out_ver->begin(), out_ver->end());
  sort(out_edge->begin(), out_edge->end());
}

/*
 * Used for subgraph sampling
 */
struct neigh_list {
  std::vector<dgl_id_t> neighs;
  std::vector<dgl_id_t> edges;
  neigh_list(const std::vector<dgl_id_t> &_neighs,
             const std::vector<dgl_id_t> &_edges)
    : neighs(_neighs), edges(_edges) {}
};

struct neighbor_info {
  dgl_id_t id;
  size_t pos;
  size_t num_edges;

  neighbor_info(dgl_id_t id, size_t pos, size_t num_edges) {
    this->id = id;
    this->pos = pos;
    this->num_edges = num_edges;
  }
};

NodeFlow ConstructNodeFlow(std::vector<dgl_id_t> neighbor_list,
                           std::vector<dgl_id_t> edge_list,
                           std::vector<size_t> layer_offsets,
                           std::vector<std::pair<dgl_id_t, int> > *sub_vers,
                           std::vector<neighbor_info> *neigh_pos,
                           const std::string &edge_type,
                           int64_t num_edges, int num_hops, bool is_multigraph) {
284
  NodeFlow nf = NodeFlow::Create();
Da Zheng's avatar
Da Zheng committed
285
  uint64_t num_vertices = sub_vers->size();
286
287
288
289
  nf->node_mapping = aten::NewIdArray(num_vertices);
  nf->edge_mapping = aten::NewIdArray(num_edges);
  nf->layer_offsets = aten::NewIdArray(num_hops + 1);
  nf->flow_offsets = aten::NewIdArray(num_hops);
Da Zheng's avatar
Da Zheng committed
290

291
292
293
294
  dgl_id_t *node_map_data = static_cast<dgl_id_t *>(nf->node_mapping->data);
  dgl_id_t *layer_off_data = static_cast<dgl_id_t *>(nf->layer_offsets->data);
  dgl_id_t *flow_off_data = static_cast<dgl_id_t *>(nf->flow_offsets->data);
  dgl_id_t *edge_map_data = static_cast<dgl_id_t *>(nf->edge_mapping->data);
Da Zheng's avatar
Da Zheng committed
295
296

  // Construct sub_csr_graph
297
298
299
300
301
  // TODO(minjie): is nodeflow a multigraph?
  auto subg_csr = CSRPtr(new CSR(num_vertices, num_edges, is_multigraph));
  dgl_id_t* indptr_out = static_cast<dgl_id_t*>(subg_csr->indptr()->data);
  dgl_id_t* col_list_out = static_cast<dgl_id_t*>(subg_csr->indices()->data);
  dgl_id_t* eid_out = static_cast<dgl_id_t*>(subg_csr->edge_ids()->data);
Da Zheng's avatar
Da Zheng committed
302
303
304
305
306
307
308
309
310
311
312
313
  size_t collected_nedges = 0;

  // The data from the previous steps:
  // * node data: sub_vers (vid, layer), neigh_pos,
  // * edge data: neighbor_list, edge_list, probability.
  // * layer_offsets: the offset in sub_vers.
  dgl_id_t ver_id = 0;
  std::vector<std::unordered_map<dgl_id_t, dgl_id_t>> layer_ver_maps;
  layer_ver_maps.resize(num_hops);
  size_t out_node_idx = 0;
  for (int layer_id = num_hops - 1; layer_id >= 0; layer_id--) {
    // We sort the vertices in a layer so that we don't need to sort the neighbor Ids
314
315
316
317
318
319
320
321
322
323
324
    // after remap to a subgraph. However, we don't need to sort the first layer
    // because we want the order of the nodes in the first layer is the same as
    // the input seed nodes.
    if (layer_id > 0) {
      std::sort(sub_vers->begin() + layer_offsets[layer_id],
                sub_vers->begin() + layer_offsets[layer_id + 1],
                [](const std::pair<dgl_id_t, dgl_id_t> &a1,
                   const std::pair<dgl_id_t, dgl_id_t> &a2) {
        return a1.first < a2.first;
      });
    }
Da Zheng's avatar
Da Zheng committed
325
326
327
328
329
330

    // Save the sampled vertices and its layer Id.
    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      node_map_data[out_node_idx++] = sub_vers->at(i).first;
      layer_ver_maps[layer_id].insert(std::pair<dgl_id_t, dgl_id_t>(sub_vers->at(i).first,
                                                                    ver_id++));
331
      CHECK_EQ(sub_vers->at(i).second, layer_id);
Da Zheng's avatar
Da Zheng committed
332
333
334
335
336
337
338
339
340
    }
  }
  CHECK(out_node_idx == num_vertices);

  // sampling algorithms have to start from the seed nodes, so the seed nodes are
  // in the first layer and the input nodes are in the last layer.
  // When we expose the sampled graph to a Python user, we say the input nodes
  // are in the first layer and the seed nodes are in the last layer.
  // Thus, when we copy sampled results to a CSR, we need to reverse the order of layers.
341
342
  std::fill(indptr_out, indptr_out + num_vertices + 1, 0);
  size_t row_idx = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
Da Zheng's avatar
Da Zheng committed
343
344
  layer_off_data[0] = 0;
  layer_off_data[1] = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
345
  int out_layer_idx = 1;
Da Zheng's avatar
Da Zheng committed
346
  for (int layer_id = num_hops - 2; layer_id >= 0; layer_id--) {
347
348
349
350
351
352
353
354
355
    // Because we don't sort the vertices in the first layer above, we can't sort
    // the neighbor positions of the vertices in the first layer either.
    if (layer_id > 0) {
      std::sort(neigh_pos->begin() + layer_offsets[layer_id],
                neigh_pos->begin() + layer_offsets[layer_id + 1],
                [](const neighbor_info &a1, const neighbor_info &a2) {
                  return a1.id < a2.id;
                });
    }
Da Zheng's avatar
Da Zheng committed
356
357
358

    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      dgl_id_t dst_id = sub_vers->at(i).first;
359
      CHECK_EQ(dst_id, neigh_pos->at(i).id);
Da Zheng's avatar
Da Zheng committed
360
      size_t pos = neigh_pos->at(i).pos;
361
      CHECK_LE(pos, neighbor_list.size());
362
363
      const size_t nedges = neigh_pos->at(i).num_edges;
      if (neighbor_list.empty()) CHECK_EQ(nedges, 0);
Da Zheng's avatar
Da Zheng committed
364
365
366

      // We need to map the Ids of the neighbors to the subgraph.
      auto neigh_it = neighbor_list.begin() + pos;
367
      for (size_t i = 0; i < nedges; i++) {
Da Zheng's avatar
Da Zheng committed
368
        dgl_id_t neigh = *(neigh_it + i);
369
        CHECK(layer_ver_maps[layer_id + 1].find(neigh) != layer_ver_maps[layer_id + 1].end());
Da Zheng's avatar
Da Zheng committed
370
371
372
373
        col_list_out[collected_nedges + i] = layer_ver_maps[layer_id + 1][neigh];
      }
      // We can simply copy the edge Ids.
      std::copy_n(edge_list.begin() + pos,
374
375
376
                  nedges, edge_map_data + collected_nedges);
      collected_nedges += nedges;
      indptr_out[row_idx+1] = indptr_out[row_idx] + nedges;
Da Zheng's avatar
Da Zheng committed
377
378
379
380
381
382
      row_idx++;
    }
    layer_off_data[out_layer_idx + 1] = layer_off_data[out_layer_idx]
        + layer_offsets[layer_id + 1] - layer_offsets[layer_id];
    out_layer_idx++;
  }
383
384
385
386
  CHECK_EQ(row_idx, num_vertices);
  CHECK_EQ(indptr_out[row_idx], num_edges);
  CHECK_EQ(out_layer_idx, num_hops);
  CHECK_EQ(layer_off_data[out_layer_idx], num_vertices);
Da Zheng's avatar
Da Zheng committed
387
388
389

  // Copy flow offsets.
  flow_off_data[0] = 0;
390
391
  int out_flow_idx = 0;
  for (size_t i = 0; i < layer_offsets.size() - 2; i++) {
392
    size_t num_edges = indptr_out[layer_off_data[i + 2]] - indptr_out[layer_off_data[i + 1]];
Da Zheng's avatar
Da Zheng committed
393
394
395
396
    flow_off_data[out_flow_idx + 1] = flow_off_data[out_flow_idx] + num_edges;
    out_flow_idx++;
  }
  CHECK(out_flow_idx == num_hops - 1);
397
  CHECK(flow_off_data[num_hops - 1] == static_cast<uint64_t>(num_edges));
Da Zheng's avatar
Da Zheng committed
398

399
  std::iota(eid_out, eid_out + num_edges, 0);
Da Zheng's avatar
Da Zheng committed
400

401
  if (edge_type == std::string("in")) {
402
    nf->graph = GraphPtr(new ImmutableGraph(subg_csr, nullptr));
Da Zheng's avatar
Da Zheng committed
403
  } else {
404
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, subg_csr));
Da Zheng's avatar
Da Zheng committed
405
406
407
408
409
  }

  return nf;
}

410
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
411
NodeFlow SampleSubgraph(const ImmutableGraph *graph,
412
                        const std::vector<dgl_id_t>& seeds,
413
                        const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
414
415
                        const std::string &edge_type,
                        int num_hops,
416
417
                        size_t num_neighbor,
                        const bool add_self_loop) {
418
  CHECK_EQ(graph->NumBits(), 64) << "32 bit graph is not supported yet";
419
  const size_t num_seeds = seeds.size();
Da Zheng's avatar
Da Zheng committed
420
  auto orig_csr = edge_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
421
422
423
  const dgl_id_t* val_list = static_cast<dgl_id_t*>(orig_csr->edge_ids()->data);
  const dgl_id_t* col_list = static_cast<dgl_id_t*>(orig_csr->indices()->data);
  const dgl_id_t* indptr = static_cast<dgl_id_t*>(orig_csr->indptr()->data);
Da Zheng's avatar
Da Zheng committed
424
425
426
427
428
429

  std::unordered_set<dgl_id_t> sub_ver_map;  // The vertex Ids in a layer.
  std::vector<std::pair<dgl_id_t, int> > sub_vers;
  sub_vers.reserve(num_seeds * 10);
  // add seed vertices
  for (size_t i = 0; i < num_seeds; ++i) {
430
    auto ret = sub_ver_map.insert(seeds[i]);
Da Zheng's avatar
Da Zheng committed
431
432
    // If the vertex is inserted successfully.
    if (ret.second) {
433
      sub_vers.emplace_back(seeds[i], 0);
Da Zheng's avatar
Da Zheng committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    }
  }
  std::vector<dgl_id_t> tmp_sampled_src_list;
  std::vector<dgl_id_t> tmp_sampled_edge_list;
  // ver_id, position
  std::vector<neighbor_info> neigh_pos;
  neigh_pos.reserve(num_seeds);
  std::vector<dgl_id_t> neighbor_list;
  std::vector<dgl_id_t> edge_list;
  std::vector<size_t> layer_offsets(num_hops + 1);
  int64_t num_edges = 0;

  layer_offsets[0] = 0;
  layer_offsets[1] = sub_vers.size();
448
  for (int layer_id = 1; layer_id < num_hops; layer_id++) {
Da Zheng's avatar
Da Zheng committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    // We need to avoid resampling the same node in a layer, but we allow a node
    // to be resampled in multiple layers. We use `sub_ver_map` to keep track of
    // sampled nodes in a layer, and clear it when entering a new layer.
    sub_ver_map.clear();
    // Previous iteration collects all nodes in sub_vers, which are collected
    // in the previous layer. sub_vers is used both as a node collection and a queue.
    for (size_t idx = layer_offsets[layer_id - 1]; idx < layer_offsets[layer_id]; idx++) {
      dgl_id_t dst_id = sub_vers[idx].first;
      const int cur_node_level = sub_vers[idx].second;

      tmp_sampled_src_list.clear();
      tmp_sampled_edge_list.clear();
      dgl_id_t ver_len = *(indptr+dst_id+1) - *(indptr+dst_id);
      if (probability == nullptr) {  // uniform-sample
        GetUniformSample(val_list + *(indptr + dst_id),
                         col_list + *(indptr + dst_id),
                         ver_len,
                         num_neighbor,
                         &tmp_sampled_src_list,
468
                         &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
469
470
471
472
473
474
475
      } else {  // non-uniform-sample
        GetNonUniformSample(probability,
                            val_list + *(indptr + dst_id),
                            col_list + *(indptr + dst_id),
                            ver_len,
                            num_neighbor,
                            &tmp_sampled_src_list,
476
                            &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
477
      }
Da Zheng's avatar
Da Zheng committed
478
479
480
      // If we need to add self loop and it doesn't exist in the sampled neighbor list.
      if (add_self_loop && std::find(tmp_sampled_src_list.begin(), tmp_sampled_src_list.end(),
                                     dst_id) == tmp_sampled_src_list.end()) {
481
        tmp_sampled_src_list.push_back(dst_id);
Da Zheng's avatar
Da Zheng committed
482
483
484
485
486
487
488
489
490
491
        const dgl_id_t *src_list = col_list + *(indptr + dst_id);
        const dgl_id_t *eid_list = val_list + *(indptr + dst_id);
        // TODO(zhengda) this operation has O(N) complexity. It can be pretty slow.
        const dgl_id_t *src = std::find(src_list, src_list + ver_len, dst_id);
        // If there doesn't exist a self loop in the graph.
        // we have to add -1 as the edge id for the self-loop edge.
        if (src == src_list + ver_len)
          tmp_sampled_edge_list.push_back(-1);
        else
          tmp_sampled_edge_list.push_back(eid_list[src - src_list]);
492
      }
Da Zheng's avatar
Da Zheng committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
      CHECK_EQ(tmp_sampled_src_list.size(), tmp_sampled_edge_list.size());
      neigh_pos.emplace_back(dst_id, neighbor_list.size(), tmp_sampled_src_list.size());
      // Then push the vertices
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        neighbor_list.push_back(tmp_sampled_src_list[i]);
      }
      // Finally we push the edge list
      for (size_t i = 0; i < tmp_sampled_edge_list.size(); ++i) {
        edge_list.push_back(tmp_sampled_edge_list[i]);
      }
      num_edges += tmp_sampled_src_list.size();
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        // We need to add the neighbor in the hashtable here. This ensures that
        // the vertex in the queue is unique. If we see a vertex before, we don't
        // need to add it to the queue again.
        auto ret = sub_ver_map.insert(tmp_sampled_src_list[i]);
        // If the sampled neighbor is inserted to the map successfully.
        if (ret.second) {
          sub_vers.emplace_back(tmp_sampled_src_list[i], cur_node_level + 1);
        }
      }
    }
    layer_offsets[layer_id + 1] = layer_offsets[layer_id] + sub_ver_map.size();
    CHECK_EQ(layer_offsets[layer_id + 1], sub_vers.size());
  }

  return ConstructNodeFlow(neighbor_list, edge_list, layer_offsets, &sub_vers, &neigh_pos,
                           edge_type, num_edges, num_hops, graph->IsMultigraph());
}

523
}  // namespace
Da Zheng's avatar
Da Zheng committed
524

525
526
DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetGraph")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
527
528
    NodeFlow nflow = args[0];
    *rv = nflow->graph;
529
530
531
532
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetNodeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
533
    NodeFlow nflow = args[0];
534
535
536
537
538
    *rv = nflow->node_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetEdgeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
539
    NodeFlow nflow = args[0];
540
541
542
543
544
    *rv = nflow->edge_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetLayerOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
545
    NodeFlow nflow = args[0];
546
547
548
549
550
    *rv = nflow->layer_offsets;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetBlockOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
551
    NodeFlow nflow = args[0];
552
553
554
    *rv = nflow->flow_offsets;
  });

555
556
557
558
559
560
561
template<typename ValueType>
NodeFlow SamplerOp::NeighborSample(const ImmutableGraph *graph,
                                   const std::vector<dgl_id_t>& seeds,
                                   const std::string &edge_type,
                                   int num_hops, int expand_factor,
                                   const bool add_self_loop,
                                   const ValueType *probability) {
Da Zheng's avatar
Da Zheng committed
562
  return SampleSubgraph(graph,
563
564
                        seeds,
                        probability,
Da Zheng's avatar
Da Zheng committed
565
566
                        edge_type,
                        num_hops + 1,
567
568
                        expand_factor,
                        add_self_loop);
Da Zheng's avatar
Da Zheng committed
569
570
}

571
namespace {
572
  void ConstructLayers(const dgl_id_t *indptr,
573
                       const dgl_id_t *indices,
574
575
                       const std::vector<dgl_id_t>& seed_array,
                       IdArray layer_sizes,
576
577
578
579
580
581
582
583
584
                       std::vector<dgl_id_t> *layer_offsets,
                       std::vector<dgl_id_t> *node_mapping,
                       std::vector<int64_t> *actl_layer_sizes,
                       std::vector<float> *probabilities) {
    /*
     * Given a graph and a collection of seed nodes, this function constructs NodeFlow
     * layers via uniform layer-wise sampling, and return the resultant layers and their
     * corresponding probabilities.
     */
585
    std::copy(seed_array.begin(), seed_array.end(), std::back_inserter(*node_mapping));
586
587
    actl_layer_sizes->push_back(node_mapping->size());
    probabilities->insert(probabilities->end(), node_mapping->size(), 1);
588
589
    const int64_t* layer_sizes_data = static_cast<int64_t*>(layer_sizes->data);
    const int64_t num_layers = layer_sizes->shape[0];
590
591
592

    size_t curr = 0;
    size_t next = node_mapping->size();
593
594
    for (int64_t i = num_layers - 1; i >= 0; --i) {
      const int64_t layer_size = layer_sizes_data[i];
595
596
597
598
599
600
601
602
603
604
605
606
      std::unordered_set<dgl_id_t> candidate_set;
      for (auto j = curr; j != next; ++j) {
        auto src = (*node_mapping)[j];
        candidate_set.insert(indices + indptr[src], indices + indptr[src + 1]);
      }

      std::vector<dgl_id_t> candidate_vector;
      std::copy(candidate_set.begin(), candidate_set.end(),
                std::back_inserter(candidate_vector));

      std::unordered_map<dgl_id_t, size_t> n_occurrences;
      auto n_candidates = candidate_vector.size();
607
      for (int64_t j = 0; j != layer_size; ++j) {
608
609
        auto dst = candidate_vector[
          RandomEngine::ThreadLocal()->RandInt(n_candidates)];
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        if (!n_occurrences.insert(std::make_pair(dst, 1)).second) {
          ++n_occurrences[dst];
        }
      }

      for (auto const &pair : n_occurrences) {
        node_mapping->push_back(pair.first);
        float p = pair.second * n_candidates / static_cast<float>(layer_size);
        probabilities->push_back(p);
      }

      actl_layer_sizes->push_back(node_mapping->size() - next);
      curr = next;
      next = node_mapping->size();
    }
    std::reverse(node_mapping->begin(), node_mapping->end());
    std::reverse(actl_layer_sizes->begin(), actl_layer_sizes->end());
    layer_offsets->push_back(0);
    for (const auto &size : *actl_layer_sizes) {
      layer_offsets->push_back(size + layer_offsets->back());
    }
  }

633
  void ConstructFlows(const dgl_id_t *indptr,
634
635
636
637
                      const dgl_id_t *indices,
                      const dgl_id_t *eids,
                      const std::vector<dgl_id_t> &node_mapping,
                      const std::vector<int64_t> &actl_layer_sizes,
638
639
640
                      std::vector<dgl_id_t> *sub_indptr,
                      std::vector<dgl_id_t> *sub_indices,
                      std::vector<dgl_id_t> *sub_eids,
641
642
643
644
645
646
647
                      std::vector<dgl_id_t> *flow_offsets,
                      std::vector<dgl_id_t> *edge_mapping) {
    /*
     * Given a graph and a sequence of NodeFlow layers, this function constructs dense
     * subgraphs (flows) between consecutive layers.
     */
    auto n_flows = actl_layer_sizes.size() - 1;
648
649
    for (int64_t i = 0; i < actl_layer_sizes.front() + 1; i++)
      sub_indptr->push_back(0);
650
651
652
653
654
655
656
657
658
659
660
661
662
    flow_offsets->push_back(0);
    int64_t first = 0;
    for (size_t i = 0; i < n_flows; ++i) {
      auto src_size = actl_layer_sizes[i];
      std::unordered_map<dgl_id_t, dgl_id_t> source_map;
      for (int64_t j = 0; j < src_size; ++j) {
        source_map.insert(std::make_pair(node_mapping[first + j], first + j));
      }
      auto dst_size = actl_layer_sizes[i + 1];
      for (int64_t j = 0; j < dst_size; ++j) {
        auto dst = node_mapping[first + src_size + j];
        typedef std::pair<dgl_id_t, dgl_id_t> id_pair;
        std::vector<id_pair> neighbor_indices;
663
        for (dgl_id_t k = indptr[dst]; k < indptr[dst + 1]; ++k) {
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
          // TODO(gaiyu): accelerate hash table lookup
          auto ret = source_map.find(indices[k]);
          if (ret != source_map.end()) {
            neighbor_indices.push_back(std::make_pair(ret->second, eids[k]));
          }
        }
        auto cmp = [](const id_pair p, const id_pair q)->bool { return p.first < q.first; };
        std::sort(neighbor_indices.begin(), neighbor_indices.end(), cmp);
        for (const auto &pair : neighbor_indices) {
          sub_indices->push_back(pair.first);
          edge_mapping->push_back(pair.second);
        }
        sub_indptr->push_back(sub_indices->size());
      }
      flow_offsets->push_back(sub_indices->size());
      first += src_size;
    }
    sub_eids->resize(sub_indices->size());
    std::iota(sub_eids->begin(), sub_eids->end(), 0);
  }
}  // namespace

NodeFlow SamplerOp::LayerUniformSample(const ImmutableGraph *graph,
687
                                       const std::vector<dgl_id_t>& seeds,
688
                                       const std::string &neighbor_type,
689
                                       IdArray layer_sizes) {
690
  const auto g_csr = neighbor_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
691
692
693
  const dgl_id_t *indptr = static_cast<dgl_id_t*>(g_csr->indptr()->data);
  const dgl_id_t *indices = static_cast<dgl_id_t*>(g_csr->indices()->data);
  const dgl_id_t *eids = static_cast<dgl_id_t*>(g_csr->edge_ids()->data);
694
695
696
697
698
699
700

  std::vector<dgl_id_t> layer_offsets;
  std::vector<dgl_id_t> node_mapping;
  std::vector<int64_t> actl_layer_sizes;
  std::vector<float> probabilities;
  ConstructLayers(indptr,
                  indices,
701
                  seeds,
702
703
704
705
706
707
                  layer_sizes,
                  &layer_offsets,
                  &node_mapping,
                  &actl_layer_sizes,
                  &probabilities);

708
  std::vector<dgl_id_t> sub_indptr, sub_indices, sub_edge_ids;
709
710
711
712
713
714
715
  std::vector<dgl_id_t> flow_offsets;
  std::vector<dgl_id_t> edge_mapping;
  ConstructFlows(indptr,
                 indices,
                 eids,
                 node_mapping,
                 actl_layer_sizes,
716
717
718
                 &sub_indptr,
                 &sub_indices,
                 &sub_edge_ids,
719
720
                 &flow_offsets,
                 &edge_mapping);
721
722
723
724
725
  // sanity check
  CHECK_GT(sub_indptr.size(), 0);
  CHECK_EQ(sub_indptr[0], 0);
  CHECK_EQ(sub_indptr.back(), sub_indices.size());
  CHECK_EQ(sub_indices.size(), sub_edge_ids.size());
726

727
  NodeFlow nf = NodeFlow::Create();
728
729
730
  auto sub_csr = CSRPtr(new CSR(aten::VecToIdArray(sub_indptr),
                                aten::VecToIdArray(sub_indices),
                                aten::VecToIdArray(sub_edge_ids)));
731
732

  if (neighbor_type == std::string("in")) {
733
    nf->graph = GraphPtr(new ImmutableGraph(sub_csr, nullptr));
734
  } else {
735
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, sub_csr));
736
737
  }

738
739
740
741
  nf->node_mapping = aten::VecToIdArray(node_mapping);
  nf->edge_mapping = aten::VecToIdArray(edge_mapping);
  nf->layer_offsets = aten::VecToIdArray(layer_offsets);
  nf->flow_offsets = aten::VecToIdArray(flow_offsets);
742
743
744
745

  return nf;
}

Da Zheng's avatar
Da Zheng committed
746
747
748
749
750
751
752
753
754
755
756
757
void BuildCsr(const ImmutableGraph &g, const std::string neigh_type) {
  if (neigh_type == "in") {
    auto csr = g.GetInCSR();
    assert(csr);
  } else if (neigh_type == "out") {
    auto csr = g.GetOutCSR();
    assert(csr);
  } else {
    LOG(FATAL) << "We don't support sample from neighbor type " << neigh_type;
  }
}

758
759
760
761
762
763
764
765
766
767
768
template<typename ValueType>
std::vector<NodeFlow> NeighborSamplingImpl(const ImmutableGraphPtr gptr,
                                           const IdArray seed_nodes,
                                           const int64_t batch_start_id,
                                           const int64_t batch_size,
                                           const int64_t max_num_workers,
                                           const int64_t expand_factor,
                                           const int64_t num_hops,
                                           const std::string neigh_type,
                                           const bool add_self_loop,
                                           const ValueType *probability) {
769
    // process args
770
    CHECK(aten::IsValidIdArray(seed_nodes));
771
772
773
774
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
775
776
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
777
    // generate node flows
778
    std::vector<NodeFlow> nflows(num_workers);
779
780
781
782
783
784
785
786
787
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
788
789
790
      nflows[i] = SamplerOp::NeighborSample(
          gptr.get(), worker_seeds, neigh_type, num_hops, expand_factor,
          add_self_loop, probability);
791
    }
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
    return nflows;
}

DGL_REGISTER_GLOBAL("sampling._CAPI_UniformSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

    std::vector<NodeFlow> nflows = NeighborSamplingImpl<float>(
        gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
        expand_factor, num_hops, neigh_type, add_self_loop, nullptr);

    *rv = List<NodeFlow>(nflows);
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_NeighborSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];
    const NDArray probability = args[9];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

    std::vector<NodeFlow> nflows;

    CHECK(probability->dtype.code == kDLFloat)
      << "transition probability must be float";
    CHECK(probability->ndim == 1)
      << "transition probability must be a 1-dimensional vector";

    ATEN_FLOAT_TYPE_SWITCH(
      probability->dtype,
      FloatType,
      "transition probability",
      {
        const FloatType *prob;

        if (probability->ndim == 1 && probability->shape[0] == 0) {
          prob = nullptr;
        } else {
          CHECK(probability->shape[0] == gptr->NumEdges())
            << "transition probability must have same number of elements as edges";
          CHECK(probability.IsContiguous())
            << "transition probability must be contiguous tensor";
          prob = static_cast<const FloatType *>(probability->data);
        }

        nflows = NeighborSamplingImpl(
            gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
            expand_factor, num_hops, neigh_type, add_self_loop, prob);
    });

864
    *rv = List<NodeFlow>(nflows);
865
866
867
868
869
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_LayerSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
870
    GraphRef g = args[0];
871
    const IdArray seed_nodes = args[1];
872
873
874
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
875
    const IdArray layer_sizes = args[5];
876
877
    const std::string neigh_type = args[6];
    // process args
878
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
879
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
880
    CHECK(aten::IsValidIdArray(seed_nodes));
881
882
883
884
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
885
886
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
887
    // generate node flows
888
    std::vector<NodeFlow> nflows(num_workers);
889
890
891
892
893
894
895
896
897
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
898
899
      nflows[i] = SamplerOp::LayerUniformSample(
          gptr.get(), worker_seeds, neigh_type, layer_sizes);
900
    }
901
    *rv = List<NodeFlow>(nflows);
902
903
  });

904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
namespace {

void BuildCoo(const ImmutableGraph &g) {
  auto coo = g.GetCOO();
  assert(coo);
}


dgl_id_t global2local_map(dgl_id_t global_id,
                          std::unordered_map<dgl_id_t, dgl_id_t> *map) {
  auto it = map->find(global_id);
  if (it == map->end()) {
    dgl_id_t local_id = map->size();
    map->insert(std::pair<dgl_id_t, dgl_id_t>(global_id, local_id));
    return local_id;
  } else {
    return it->second;
  }
}

Da Zheng's avatar
Da Zheng committed
924
inline bool IsNegativeHeadMode(const std::string &mode) {
925
926
927
  return mode == "head";
}

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
IdArray GetGlobalVid(IdArray induced_nid, IdArray subg_nid) {
  IdArray gnid = IdArray::Empty({subg_nid->shape[0]}, subg_nid->dtype, subg_nid->ctx);
  const dgl_id_t *induced_nid_data = static_cast<dgl_id_t *>(induced_nid->data);
  const dgl_id_t *subg_nid_data = static_cast<dgl_id_t *>(subg_nid->data);
  dgl_id_t *gnid_data = static_cast<dgl_id_t *>(gnid->data);
  for (int64_t i = 0; i < subg_nid->shape[0]; i++) {
    gnid_data[i] = induced_nid_data[subg_nid_data[i]];
  }
  return gnid;
}

IdArray CheckExistence(GraphPtr gptr, IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid) {
  return gptr->HasEdgesBetween(GetGlobalVid(induced_nid, neg_src),
                               GetGlobalVid(induced_nid, neg_dst));
}

IdArray CheckExistence(GraphPtr gptr, IdArray relations,
                       IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid, IdArray neg_eid) {
  neg_src = GetGlobalVid(induced_nid, neg_src);
  neg_dst = GetGlobalVid(induced_nid, neg_dst);
  BoolArray exist = gptr->HasEdgesBetween(neg_src, neg_dst);
  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *relation_data = static_cast<dgl_id_t *>(relations->data);
  // TODO(zhengda) is this right?
  dgl_id_t *exist_data = static_cast<dgl_id_t *>(exist->data);
  int64_t num_neg_edges = neg_src->shape[0];
  for (int64_t i = 0; i < num_neg_edges; i++) {
    // If the edge doesn't exist, we don't need to do anything.
    if (!exist_data[i])
      continue;
    // If the edge exists, we need to double check if the relations match.
    // If they match, this negative edge isn't really a negative edge.
    dgl_id_t eid1 = neg_eid_data[i];
    dgl_id_t orig_neg_rel1 = relation_data[eid1];
    IdArray eids = gptr->EdgeId(neg_src_data[i], neg_dst_data[i]);
    dgl_id_t *eid_data = static_cast<dgl_id_t *>(eids->data);
    int64_t num_edges_between = eids->shape[0];
    bool same_rel = false;
    for (int64_t j = 0; j < num_edges_between; j++) {
      dgl_id_t neg_rel1 = relation_data[eid_data[j]];
      if (neg_rel1 == orig_neg_rel1) {
        same_rel = true;
        break;
      }
    }
    exist_data[i] = same_rel;
  }
  return exist;
}

NegSubgraph NegEdgeSubgraph(GraphPtr gptr, IdArray relations, const Subgraph &pos_subg,
                            const std::string &neg_mode,
Da Zheng's avatar
Da Zheng committed
984
985
                            int neg_sample_size, bool exclude_positive,
                            bool check_false_neg) {
986
987
  int64_t num_tot_nodes = gptr->NumVertices();
  bool is_multigraph = gptr->IsMultigraph();
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;
  int64_t num_neg_edges = num_pos_edges * neg_sample_size;
  IdArray neg_dst = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_eid = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
  const dgl_id_t *induced_vid_data = static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data = static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
  size_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<size_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

Da Zheng's avatar
Da Zheng committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;
  if (IsNegativeHeadMode(neg_mode)) {
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

1023
1024
1025
1026
  dgl_id_t curr_eid = 0;
  std::vector<size_t> neg_vids;
  neg_vids.reserve(neg_sample_size);
  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
Da Zheng's avatar
Da Zheng committed
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
  // If we don't exclude positive edges, we are actually sampling more than
  // the total number of nodes in the graph.
  if (!exclude_positive && neg_sample_size >= num_tot_nodes) {
    // We add all nodes as negative nodes.
    for (int64_t i = 0; i < num_tot_nodes; i++) {
      neg_vids.push_back(i);
      neg_map[i] = i;
    }
  }

1037
1038
1039
1040
1041
  for (int64_t i = 0; i < num_pos_edges; i++) {
    size_t neg_idx = i * neg_sample_size;

    std::vector<size_t> neighbors;
    DGLIdIters neigh_it;
Da Zheng's avatar
Da Zheng committed
1042
    if (IsNegativeHeadMode(neg_mode)) {
1043
      neigh_it = gptr->PredVec(induced_vid_data[unchanged[i]]);
1044
    } else {
1045
      neigh_it = gptr->SuccVec(induced_vid_data[unchanged[i]]);
1046
1047
    }

Da Zheng's avatar
Da Zheng committed
1048
1049
1050
    // If the number of negative nodes is smaller than the number of total nodes
    // in the graph.
    if (exclude_positive && neg_sample_size < num_tot_nodes) {
1051
1052
      std::vector<size_t> exclude;
      for (auto it = neigh_it.begin(); it != neigh_it.end(); it++) {
1053
1054
        dgl_id_t global_vid = *it;
        exclude.push_back(global_vid);
1055
      }
Da Zheng's avatar
Da Zheng committed
1056
      neg_vids.clear();
1057
      RandomSample(num_tot_nodes, neg_sample_size, exclude, &neg_vids);
Da Zheng's avatar
Da Zheng committed
1058
1059
    } else if (neg_sample_size < num_tot_nodes) {
      neg_vids.clear();
1060
      RandomSample(num_tot_nodes, neg_sample_size, &neg_vids);
Da Zheng's avatar
Da Zheng committed
1061
1062
1063
1064
1065
1066
1067
    } else if (exclude_positive) {
      LOG(FATAL) << "We can't exclude positive edges when sampling negative edges with all nodes.";
    } else {
      // We don't need to do anything here.
      // In this case, every edge has the same negative edges. That is,
      // neg_vids contains all nodes of the graph. They have been generated
      // before the for loop.
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    }

    dgl_id_t global_unchanged = induced_vid_data[unchanged[i]];
    dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);

    for (int64_t j = 0; j < neg_sample_size; j++) {
      neg_unchanged[neg_idx + j] = local_unchanged;
      neg_eid_data[neg_idx + j] = curr_eid++;
      dgl_id_t local_changed = global2local_map(neg_vids[j], &neg_map);
      neg_changed[neg_idx + j] = local_changed;
      // induced negative eid references to the positive one.
      induced_neg_eid_data[neg_idx + j] = induced_eid_data[i];
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1091
  NegSubgraph neg_subg;
1092
1093
1094
1095
1096
1097
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst, is_multigraph));
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
1098
  // TODO(zhengda) we should provide an array of 1s if exclude_positive
Da Zheng's avatar
Da Zheng committed
1099
1100
1101
1102
1103
1104
1105
  if (check_false_neg) {
    if (relations->shape[0] == 0) {
      neg_subg.exist = CheckExistence(gptr, neg_src, neg_dst, induced_neg_vid);
    } else {
      neg_subg.exist = CheckExistence(gptr, relations, neg_src, neg_dst,
                                      induced_neg_vid, induced_neg_eid);
    }
1106
  }
1107
1108
1109
  return neg_subg;
}

1110
NegSubgraph PBGNegEdgeSubgraph(GraphPtr gptr, IdArray relations, const Subgraph &pos_subg,
1111
1112
                            const std::string &neg_mode,
                            int neg_sample_size, bool is_multigraph,
Da Zheng's avatar
Da Zheng committed
1113
                            bool exclude_positive, bool check_false_neg) {
1114
  int64_t num_tot_nodes = gptr->NumVertices();
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;

  int64_t chunk_size = neg_sample_size;
  // If num_pos_edges isn't divisible by chunk_size, the actual number of chunks
  // is num_chunks + 1 and the last chunk size is last_chunk_size.
  // Otherwise, the actual number of chunks is num_chunks, the last chunk size
  // is 0.
  int64_t num_chunks = num_pos_edges / chunk_size;
  int64_t last_chunk_size = num_pos_edges - num_chunks * chunk_size;

  // The number of negative edges.
  int64_t num_neg_edges = neg_sample_size * chunk_size * num_chunks;
  int64_t num_neg_edges_last_chunk = neg_sample_size * last_chunk_size;
  int64_t num_all_neg_edges = num_neg_edges + num_neg_edges_last_chunk;

  // We should include the last chunk.
  if (last_chunk_size > 0)
    num_chunks++;

  IdArray neg_dst = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_eid = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
  const dgl_id_t *induced_vid_data = static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data = static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
  size_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<size_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;

  // corrupt head nodes.
Da Zheng's avatar
Da Zheng committed
1159
  if (IsNegativeHeadMode(neg_mode)) {
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    // corrupt tail nodes.
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

  // We first sample all negative edges.
  std::vector<size_t> neg_vids;
  RandomSample(num_tot_nodes,
               num_chunks * neg_sample_size,
               &neg_vids);

  dgl_id_t curr_eid = 0;
  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
  for (int64_t i_chunk = 0; i_chunk < num_chunks; i_chunk++) {
    // for each chunk.
    int64_t neg_idx = neg_sample_size * chunk_size * i_chunk;
    int64_t pos_edge_idx = chunk_size * i_chunk;
    int64_t neg_node_idx = neg_sample_size * i_chunk;
    // The actual chunk size. It'll be different for the last chunk.
    int64_t chunk_size1;
    if (i_chunk == num_chunks - 1 && last_chunk_size > 0)
      chunk_size1 = last_chunk_size;
    else
      chunk_size1 = chunk_size;

    for (int64_t in_chunk = 0; in_chunk != chunk_size1; ++in_chunk) {
      // For each positive node in a chunk.

      dgl_id_t global_unchanged = induced_vid_data[unchanged[pos_edge_idx + in_chunk]];
      dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);
      for (int64_t j = 0; j < neg_sample_size; ++j) {
        neg_unchanged[neg_idx] = local_unchanged;
        neg_eid_data[neg_idx] = curr_eid++;
        dgl_id_t global_changed_vid = neg_vids[neg_node_idx + j];

        // TODO(zhengda) we can avoid the hashtable lookup here.
        dgl_id_t local_changed = global2local_map(global_changed_vid, &neg_map);
        neg_changed[neg_idx] = local_changed;
        induced_neg_eid_data[neg_idx] = induced_eid_data[pos_edge_idx + in_chunk];
        neg_idx++;
      }
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1217
  NegSubgraph neg_subg;
1218
1219
1220
1221
1222
1223
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst, is_multigraph));
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
Da Zheng's avatar
Da Zheng committed
1224
1225
1226
1227
1228
1229
1230
  if (check_false_neg) {
    if (relations->shape[0] == 0) {
      neg_subg.exist = CheckExistence(gptr, neg_src, neg_dst, induced_neg_vid);
    } else {
      neg_subg.exist = CheckExistence(gptr, relations, neg_src, neg_dst,
                                      induced_neg_vid, induced_neg_eid);
    }
1231
  }
1232
1233
1234
  return neg_subg;
}

1235
1236
1237
1238
inline SubgraphRef ConvertRef(const Subgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new Subgraph(subg)));
}

1239
1240
1241
1242
inline SubgraphRef ConvertRef(const NegSubgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new NegSubgraph(subg)));
}

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
}  // namespace

DGL_REGISTER_GLOBAL("sampling._CAPI_UniformEdgeSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    GraphRef g = args[0];
    IdArray seed_edges = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const std::string neg_mode = args[5];
    const int neg_sample_size = args[6];
    const bool exclude_positive = args[7];
Da Zheng's avatar
Da Zheng committed
1256
1257
    const bool check_false_neg = args[8];
    IdArray relations = args[9];
1258
1259
1260
    // process args
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
1261
    CHECK(aten::IsValidIdArray(seed_edges));
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
    BuildCoo(*gptr);

    const int64_t num_seeds = seed_edges->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
    // generate subgraphs.
    std::vector<SubgraphRef> positive_subgs(num_workers);
    std::vector<SubgraphRef> negative_subgs(num_workers);
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      const int64_t num_edges = end - start;
      IdArray worker_seeds = seed_edges.CreateView({num_edges}, DLDataType{kDLInt, 64, 1},
                                                   sizeof(dgl_id_t) * start);
      EdgeArray arr = gptr->FindEdges(worker_seeds);
      const dgl_id_t *src_ids = static_cast<const dgl_id_t *>(arr.src->data);
      const dgl_id_t *dst_ids = static_cast<const dgl_id_t *>(arr.dst->data);
      std::vector<dgl_id_t> src_vec(src_ids, src_ids + num_edges);
      std::vector<dgl_id_t> dst_vec(dst_ids, dst_ids + num_edges);
      // TODO(zhengda) what if there are duplicates in the src and dst vectors.

      Subgraph subg = gptr->EdgeSubgraph(worker_seeds, false);
      positive_subgs[i] = ConvertRef(subg);
1286
1287
1288
      // For PBG negative sampling, we accept "PBG-head" for corrupting head
      // nodes and "PBG-tail" for corrupting tail nodes.
      if (neg_mode.substr(0, 3) == "PBG") {
1289
1290
        NegSubgraph neg_subg = PBGNegEdgeSubgraph(gptr, relations, subg,
                                                  neg_mode.substr(4), neg_sample_size,
Da Zheng's avatar
Da Zheng committed
1291
1292
                                                  gptr->IsMultigraph(), exclude_positive,
                                                  check_false_neg);
1293
1294
        negative_subgs[i] = ConvertRef(neg_subg);
      } else if (neg_mode.size() > 0) {
1295
        NegSubgraph neg_subg = NegEdgeSubgraph(gptr, relations, subg, neg_mode, neg_sample_size,
Da Zheng's avatar
Da Zheng committed
1296
                                               exclude_positive, check_false_neg);
1297
1298
1299
1300
1301
1302
1303
1304
1305
        negative_subgs[i] = ConvertRef(neg_subg);
      }
    }
    if (neg_mode.size() > 0) {
      positive_subgs.insert(positive_subgs.end(), negative_subgs.begin(), negative_subgs.end());
    }
    *rv = List<SubgraphRef>(positive_subgs);
  });

1306
1307
1308
1309
1310
1311
1312
1313

DGL_REGISTER_GLOBAL("sampling._CAPI_GetNegEdgeExistence")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->exist;
});

Da Zheng's avatar
Da Zheng committed
1314
}  // namespace dgl